Skip to main content
Log in

Vanadium oxide nanostructures for chemiresistive gas and vapour sensing: a review on state of the art

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This review (with 200 references) summarises the state of the art of gas and vapour sensors based on the use of vanadium oxide (VOx; with V occurring in various valencies) nanostructures. Following an introduction that covers the discussion of VOx and their stable forms, the first large section covers experimental techniques employed for preparing VOx nanostructures, with methods such as precipitation, hydrothermal synthesis, electrospinning, polyol techniques, laser deposition, and magnetron sputtering. The next section deals with VOx-based sensors for oxidising gases such as nitrogen dioxide, carbon dioxide, oxygen, and ozone. We then discuss sensors for reducing gases and vapour, such as various alcohols, formaldehyde, hydrogen, methane, various amines, hydrogen sulphide, LPG, and neutral gases and vapours such as helium and humidity. An overview of the wealth of materials, methods, and sensing characteristics such as sensor response, analytical ranges, and operational temperatures is presented in Tables. The final section briefs the VOx-based flexible sensors, followed by a concluding section that summarises the current status and challenges, and gives an outlook on potential future perspectives.

The state of the art of vanadium oxide nanostructures in gas/vapour sensing has been discussed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Joshi N, Hayasaka T, Liu Y, et al (2018) A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim Acta 185. https://doi.org/10.1007/s00604-018-2750-5

  2. Mani GK, Rayappan JBB (2013) A highly selective room temperature ammonia sensor using spray deposited zinc oxide thin film. Sensors Actuators B Chem 183:459–466. https://doi.org/10.1016/j.snb.2013.03.132

    Article  CAS  Google Scholar 

  3. Shaalan NM, Rashad M, Abdel-Rahim MA (2016) Repeatability of indium oxide gas sensors for detecting methane at low temperature. Mater Sci Semicond Process 56:260–264. https://doi.org/10.1016/j.mssp.2016.09.007

    Article  CAS  Google Scholar 

  4. Dhivya P, Prasad AK, Sridharan M (2014) Magnetron sputtered nanostructured cadmium oxide films for ammonia sensing. J Solid State Chem 214:24–29. https://doi.org/10.1016/j.jssc.2013.11.030

    Article  CAS  Google Scholar 

  5. Das A, Bonu V, Prasad AK et al (2014) The role of SnO 2 quantum dots in improved CH 4 sensing at low temperature. J Mater Chem C 2:164–171. https://doi.org/10.1039/C3TC31728E

    Article  CAS  Google Scholar 

  6. Li Y, Ji S, Gao Y et al (2013) Core-shell VO2 @TiO2 nanorods that combine thermochromic and photocatalytic properties for application as energy-saving smart coatings. Sci Rep 3:1–13. https://doi.org/10.1038/srep01370

    Article  CAS  Google Scholar 

  7. Epifani M, Comini E, Díaz R, et al (2014) Solvothermal, chloroalkoxide-based synthesis of monoclinic WO3 quantum dots and gas-sensing enhancement by surface oxygen vacancies. ACS Appl Mater Interfaces 6:. https://doi.org/10.1021/am504158r

  8. Korotcenkov G, Brinzari V, Cho BK (2016) Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review. Microchim Acta 183:1033–1054. https://doi.org/10.1007/s00604-015-1741-z

    Article  CAS  Google Scholar 

  9. Kida T, Nishiyama A, Hua Z et al (2014) WO3 nanolamella gas sensor: porosity control using SnO2 nanoparticles for enhanced NO2 sensing. Langmuir 30:2571–2579. https://doi.org/10.1021/la4049105

    Article  CAS  PubMed  Google Scholar 

  10. Xu L, Xing R, Song J et al (2013) ZnO–SnO2 nanotubes surface engineered by Ag nanoparticles: synthesis, characterization, and highly enhanced HCHO gas sensing properties. J Mater Chem C 1:2174. https://doi.org/10.1039/c3tc00689a

    Article  CAS  Google Scholar 

  11. Attarde RR, Patil DR (2015) Nanostructured CdO doped MnO 2 thick film resistors as ethanol sensors. Int J Recent Innov Trends Comput Commun 3:6194–6199

    Google Scholar 

  12. Fu H, Yang X, An X et al (2017) Experimental and theoretical studies of V 2 O 5 @TiO 2 Core-shell hybrid composites with high gas sensing performance towards ammonia. Sensors Actuators B Chem 252:103–115. https://doi.org/10.1016/j.snb.2017.05.027

    Article  CAS  Google Scholar 

  13. Sivalingam D, Gopalakrishnan JB, Rayappan JBB (2012) Nanostructured mixed ZnO and CdO thin film for selective ethanol sensing. Mater Lett 77:117–120. https://doi.org/10.1016/j.matlet.2012.03.009

    Article  CAS  Google Scholar 

  14. Mounasamy V, Mani GK, Ponnusamy D et al (2018) Template-free synthesis of vanadium sesquioxide (V2O3) nanosheets and their room-temperature sensing performance. J Mater Chem A 6:6402–6413. https://doi.org/10.1039/C7TA10159G

    Article  CAS  Google Scholar 

  15. Qin Y, Fan G, Liu K, Hu M (2014) Vanadium pentoxide hierarchical structure networks for high performance ethanol gas sensor with dual working temperature characteristic. Sensors Actuators B Chem 190:141–148. https://doi.org/10.1016/j.snb.2013.08.061

    Article  CAS  Google Scholar 

  16. Huotari J, Bjorklund R, Lappalainen J, Lloyd Spetz a. (2014) Pulsed laser deposited nanostructured vanadium oxide thin films characterized as ammonia sensors. Sensors Actuators B Chem 217:22–29. https://doi.org/10.1016/j.snb.2015.02.089

    Article  CAS  Google Scholar 

  17. Mane AA, Suryawanshi MP, Kim JH, Moholkar AV (2017) Fast response of sprayed vanadium pentoxide (V2O5) nanorods towards nitrogen dioxide (NO2) gas detection. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2017.01.220

  18. Zakharova GS, Liu Y, Enyashin AN et al (2018) Metal cations doped vanadium oxide nanotubes: synthesis, electronic structure, and gas sensing properties. Sensors Actuators B Chem 256:1021–1029. https://doi.org/10.1016/j.snb.2017.10.042

    Article  CAS  Google Scholar 

  19. Liu J, Wang X, Peng Q, Li Y (2006) Preparation and gas sensing properties of vanadium oxide nanobelts coated with semiconductor oxides. Sensors Actuators B Chem 115:481–487. https://doi.org/10.1016/j.snb.2005.10.012

    Article  CAS  Google Scholar 

  20. Rella R, Siciliano P, Cricenti a., et al (1999) A study of physical properties and gas-surface interaction of vanadium oxide thin films. Thin Solid Films 349:254–259. https://doi.org/10.1016/S0040-6090(99)00142-X

  21. Modafferi V, Trocino S, Donato A et al (2013) Electrospun V2O5 composite fibers: synthesis, characterization and ammonia sensing properties. Thin Solid Films 548:689–694. https://doi.org/10.1016/j.tsf.2013.03.137

    Article  CAS  Google Scholar 

  22. Irani R, Rozati SM, Beke S (2013) Structural and optical properties of nanostructural V2O5 thin films deposited by spray pyrolysis technique: effect of the substrate temperature. Mater Chem Phys 139:489–493. https://doi.org/10.1016/j.matchemphys.2013.01.046

    Article  CAS  Google Scholar 

  23. Beke S (2011) A review of the growth of V2O5 films from 1885 to 2010. Thin Solid Films 519:1761–1771. https://doi.org/10.1016/j.tsf.2010.11.001

    Article  CAS  Google Scholar 

  24. Shao Z, Cao X, Luo H, Jin P (2018) Recent progress in the phase-transition mechanism and modulation of vanadium dioxide materials. NPG Asia Mater:581–605. https://doi.org/10.1038/s41427-018-0061-2

  25. Liu X, Zeng J, Yang H et al (2018) V2O5-based nanomaterials: synthesis and their applications. RSC Adv 8:4014–4031. https://doi.org/10.1039/c7ra12523b

    Article  CAS  Google Scholar 

  26. Shaheen SM, Alessi DS, Tack FMG et al (2019) Redox chemistry of vanadium in soils and sediments: interactions with colloidal materials, mobilization, speciation, and relevant environmental implications-a review. Adv Colloid Interf Sci 265:1–13. https://doi.org/10.1016/j.cis.2019.01.002

    Article  CAS  Google Scholar 

  27. Schoiswohl J, Surnev S, Netzer FP, Kresse G (2006) Vanadium oxide nanostructures: from zero- to three-dimensional. J Phys Condens Matter 18:R1–R14. https://doi.org/10.1088/0953-8984/18/4/R01

    Article  CAS  Google Scholar 

  28. Liu M, Su B, Tang Y et al (2017) Recent advances in nanostructured vanadium oxides and composites for energy conversion. Adv Energy Mater 7:1–34. https://doi.org/10.1002/aenm.201700885

    Article  CAS  Google Scholar 

  29. Chang TC, Cao X, Bao SH et al (2018) Review on thermochromic vanadium dioxide based smart coatings: from lab to commercial application. Adv Manuf 6:1–19. https://doi.org/10.1007/s40436-017-0209-2

    Article  CAS  Google Scholar 

  30. Jin W, Dong B, Chen W et al (2010) Synthesis and gas sensing properties of Fe2O3 nanoparticles activated V2O5 nanotubes. Sensors Actuators B Chem 145:211–215. https://doi.org/10.1016/j.snb.2009.11.059

    Article  CAS  Google Scholar 

  31. Vernardou D (2013) State-of-the-art of chemically grown vanadium pentoxide nanostructures with enhanced electrochemical properties. Adv Mater Lett 4:798–810. https://doi.org/10.5185/amlett.2013.5485

    Article  Google Scholar 

  32. Bahlawane N, Lenoble D (2014) Vanadium oxide compounds: structure, properties, and growth from the gas phase. Chem Vap Depos 20:299–311. https://doi.org/10.1002/cvde.201400057

    Article  CAS  Google Scholar 

  33. Su Q, Lan W, Wang YY, Liu XQ (2009) Structural characterization of β-V2O5 films prepared by DC reactive magnetron sputtering. Appl Surf Sci 255:4177–4179. https://doi.org/10.1016/j.apsusc.2008.11.002

    Article  CAS  Google Scholar 

  34. Balog P, Orosel D, Cancarevic Z et al (2007) V2O5 phase diagram revisited at high pressures and high temperatures. J Alloys Compd 429:87–98. https://doi.org/10.1016/j.jallcom.2006.04.042

    Article  CAS  Google Scholar 

  35. Londero E, Schröder E (2011) Vanadium pentoxide (V2O5): a van der Waals density functional study. Comput Phys Commun 182:1805–1809. https://doi.org/10.1016/j.cpc.2010.12.036

    Article  CAS  Google Scholar 

  36. Ramana CV, Hussain OM, Naidu BS, Reddy PJ (1997) Spectroscopic characterization of electron-beam evaporated V2O5 thin films. Thin Solid Films 305:219–226. https://doi.org/10.1016/S0040-6090(97)00141-7

    Article  CAS  Google Scholar 

  37. Darling RB, Iwanaga S (2009) Structure, properties, and MEMS and microelectronic applications of vanadium oxides. Sadhana - Acad Proc Eng Sci 34:531–542. https://doi.org/10.1007/s12046-009-0025-x

    Article  CAS  Google Scholar 

  38. Eyert V, Höck K-H (1998) Electronic structure of V2O5: role of octahedral deformations. Phys Rev B 57:12727–12737. https://doi.org/10.1103/PhysRevB.57.12727

    Article  CAS  Google Scholar 

  39. Basu R, Prasad AK, Dhara S, Das A (2016) Role of vanadyl oxygen in understanding metallic behavior of V2O5(001) nanorods. J Phys Chem C 120:26539–26543. https://doi.org/10.1021/acs.jpcc.6b08452

    Article  CAS  Google Scholar 

  40. Pawar MS, Bankar PK, More MA, Late DJ (2015) Ultra-thin V2O5 nanosheet based humidity sensor, photodetector and its enhanced field emission properties. RSC Adv 5:88796–88804. https://doi.org/10.1039/c5ra17253e

    Article  CAS  Google Scholar 

  41. Prasad AK, Amirthapandian S, Dhara S et al (2014) Novel single phase vanadium dioxide nanostructured films for methane sensing near room temperature. Sensors Actuators B Chem 191:252–256. https://doi.org/10.1016/j.snb.2013.09.102

    Article  CAS  Google Scholar 

  42. Zhang Y, Zhang F, Yu L et al (2012) Synthesis and characterization of belt-like VO2(B)@carbon and V2O3@carbon core–shell structured composites. Colloids Surfaces A Physicochem Eng Asp 396:144–152. https://doi.org/10.1016/j.colsurfa.2011.12.058

    Article  CAS  Google Scholar 

  43. Park J-H, Tjeng L, Tanaka A et al (2000) Spin and orbital occupation and phase transitions in V2O3. Phys Rev B 61:11506–11509. https://doi.org/10.1103/PhysRevB.61.11506

    Article  CAS  Google Scholar 

  44. Mott NF, Zinamon Z, Brewer WD Angular correlation study of hyperfine interactions in vanadium sesquioxide V , O ,

  45. Wang Y-T, Whang W-T, Chen C-H (2015) Hollow V2O5 nanoassemblies for high-performance room-temperature hydrogen sensors. ACS Appl Mater Interfaces 7:8480–8487. https://doi.org/10.1021/am509182s

    Article  CAS  PubMed  Google Scholar 

  46. Mizsei J (1995) How can sensitive and selective semiconductor gas sensors be made? Sensors Actuators B Chem 23:173–176. https://doi.org/10.1016/0925-4005(94)01269-N

    Article  CAS  Google Scholar 

  47. Wachs GD and IE (1994) Supported vanadium oxide catalysts: molecular structural characterization and reactivity properties. pp 141–187

  48. Mjejri I, Rougier A, Gaudon M (2017) Low-cost and facile synthesis of the vanadium oxides V2O3,VO2, and V2O5 and their magnetic, thermochromic and electrochromic properties. Inorg Chem 56:1734–1741. https://doi.org/10.1021/acs.inorgchem.6b02880

    Article  CAS  PubMed  Google Scholar 

  49. Liang C, Fang D, Cao Y et al (2015) Polypyrrole-encapsulated vanadium pentoxide nanowires on a conductive substrate for electrode in aqueous rechargeable lithium battery. J Colloid Interface Sci 439:69–75. https://doi.org/10.1016/j.jcis.2014.10.011

    Article  CAS  PubMed  Google Scholar 

  50. Pradhan M, Roy A, Sinha AK et al (2015) Solid-state transformation of single precursor vanadium complex nanostructures to V 2 O 5 and VO 2: catalytic activity of V 2 O 5 for oxidative coupling of 2-naphthol. Dalt Trans 44:1889–1899. https://doi.org/10.1039/C4DT02863E

    Article  CAS  Google Scholar 

  51. Umeshbabu E, Ranga Rao G (2016) Vanadium pentoxide nanochains for high-performance electrochemical supercapacitors. J Colloid Interface Sci 472:210–219. https://doi.org/10.1016/j.jcis.2016.03.050

    Article  CAS  PubMed  Google Scholar 

  52. Han J, Jiang L, Li F et al (2016) Ultrasensitive non-enzymatic immunosensor for carcino-embryonic antigen based on palladium hybrid vanadium pentoxide/multiwalled carbon nanotubes. Biosens Bioelectron 77:1104–1111. https://doi.org/10.1016/j.bios.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  53. George JM, Antony A, Mathew B (2018) Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchim Acta 185. https://doi.org/10.1007/s00604-018-2894-3

  54. Kajal Kumar Dey, a, b Divyanshu Bhatnagar, a Avanish Kumar Srivastava,*a Meher Wan B, Satyendra, Singh, b Raja Ram Yadav b BCY and MD (2015) VO2 nanorods for efficient performance in thermal fluids and sensors. Nanoscale 7:6159–6172. https://doi.org/10.1039/C4NR06032F

  55. Zylbersztejn A, Mott NF (1975) Metal-insulator transition in vanadium dioxide. Phys Rev B 11:4383–4395. https://doi.org/10.1103/PhysRevB.11.4383

    Article  CAS  Google Scholar 

  56. Liang J, Zhao Y, Zhu K et al (2019) Synthesis and room temperature NO2 gas sensitivity of vanadium dioxide nanowire structures by chemical vapor deposition. Thin Solid Films 669:537–543. https://doi.org/10.1016/j.tsf.2018.11.046

    Article  CAS  Google Scholar 

  57. Zhu M, Wang H, Wang B et al (2018) New route for modification of thermochromic properties of vanadium dioxide films via high-energy X-ray irradiation. Ceram Int 45:1661–1669. https://doi.org/10.1016/j.ceramint.2018.10.043

    Article  CAS  Google Scholar 

  58. Pinna N, Hochepied J-F, Niederberger M, Gregg M (2009) Chemistry and physics of metal oxide nanostructures. Phys Chem Chem Phys 11:3607. https://doi.org/10.1039/b905768d

    Article  CAS  PubMed  Google Scholar 

  59. Huan C, Zhao X, Xiao X et al (2019) One-step solvothermal synthesis of V2O3@C nanoparticles as anode materials for lithium-ion battery. J Alloys Compd 776:568–574. https://doi.org/10.1016/j.jallcom.2018.10.323

    Article  CAS  Google Scholar 

  60. Abdel-Rahman M, Alduraibi M, Zia MF, et al (2017) Vanadium sesquioxide (V 2 O 3 )-based semiconducting temperature sensitive resistors for uncooled microbolometers. Mod Phys Lett B 31:1750145. https://doi.org/10.1142/S0217984917501457

  61. Zhang R, Han J, Zheng B, et al (2019) Metal–organic framework-derived shuttle-like V 2 O 3 /C for electrocatalytic N 2 reduction under ambient conditions. Inorg Chem Front 4–8. https://doi.org/10.1039/C8QI01145A

  62. Silversmit G, Depla D, Poelman H et al (2004) Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J Electron Spectros Relat Phenomena 135:167–175. https://doi.org/10.1016/j.elspec.2004.03.004

    Article  CAS  Google Scholar 

  63. Hryha E, Rutqvist E, Nyborg L (2012) Stoichiometric vanadium oxides studied by XPS. Surf Interface Anal 44:1022–1025. https://doi.org/10.1002/sia.3844

    Article  CAS  Google Scholar 

  64. G. A S and DP (1979) X-ray photoelectron and Auger spectroscopy study of some vanadium oxides. Phys Rev B 20:

  65. Alov N, Kutsko D, Spirovová I, Bastl Z (2006) XPS study of vanadium surface oxidation by oxygen ion bombardment. Surf Sci 600:1628–1631. https://doi.org/10.1016/j.susc.2005.12.052

    Article  CAS  Google Scholar 

  66. Ji H, Liu D, Cheng H et al (2017) Facile synthesis and electrical switching properties of V2O3 powders. Mater Sci Eng B 217:1–6. https://doi.org/10.1016/j.mseb.2017.01.003

    Article  CAS  Google Scholar 

  67. Sanchez C, Livage J, Lucazeau G (1982) Infrared and Raman study of amorphous V2O5. J Raman Spectrosc 12:68–72. https://doi.org/10.1002/jrs.1250120110

    Article  CAS  Google Scholar 

  68. Basu R, Sardar M, Bera S et al (2017) The role of 1-D finite size Heisenberg chains in increasing the metal to insulator transition temperature in hole rich VO 2. Nanoscale 9:6537–6544. https://doi.org/10.1039/C7NR00729A

    Article  CAS  PubMed  Google Scholar 

  69. Zhang C, Yang Q, Koughia C et al (2016) Characterization of vanadium oxide thin films with different stoichiometry using Raman spectroscopy. Thin Solid Films 620:64–69. https://doi.org/10.1016/j.tsf.2016.07.082

    Article  CAS  Google Scholar 

  70. Ureña-Begara F, Crunteanu A, Raskin JP (2017) Raman and XPS characterization of vanadium oxide thin films with temperature. Appl Surf Sci 403:717–727. https://doi.org/10.1016/j.apsusc.2017.01.160

    Article  CAS  Google Scholar 

  71. Chen XB, Shin JH, Kim HT, Lim YS (2012) Raman analyses of co-phasing and hysteresis behaviors in V 2O3 thin film. J Raman Spectrosc 43:2025–2028. https://doi.org/10.1002/jrs.4112

    Article  CAS  Google Scholar 

  72. Rane AV, Kanny K, Abitha VK, Thomas S (2018) Methods for synthesis of nanoparticles and fabrication of nanocomposites. Elsevier Ltd.

  73. Dhayal Raj A, Suresh Kumar P, Yang Q, Mangalaraj D (2012) Synthesis and gas sensors behavior of surfactants free V2O5 nanostructure by using a simple precipitation method. Phys E Low-dimensional Syst Nanostructures 44:1490–1494. https://doi.org/10.1016/j.physe.2012.03.016

    Article  CAS  Google Scholar 

  74. Shandilya M, Rai R, Singh J (2016) Review: hydrothermal technology for smart materials. Adv Appl Ceram 115:354–376. https://doi.org/10.1080/17436753.2016.1157131

    Article  CAS  Google Scholar 

  75. Yang XH, Xie H, Fu HT et al (2016) Synthesis of hierarchical nanosheet-assembled V 2 O 5 microflowers with high sensing properties towards amines. RSC Adv 6:87649–87655. https://doi.org/10.1039/C6RA18848F

    Article  CAS  Google Scholar 

  76. Kim YB, Shin MW (2014) Synthesis of diverse structured vanadium pentoxides particles by the simplified hydrothermal method. Mater Lett 132:247–250. https://doi.org/10.1016/j.matlet.2014.06.086

    Article  CAS  Google Scholar 

  77. Chauhan PS, Bhattacharya S (2018) Highly sensitive V2O5·1.6 H2O nanostructures for sensing of helium gas at room temperature. Mater Lett 217:83–87. https://doi.org/10.1016/j.matlet.2018.01.056

    Article  CAS  Google Scholar 

  78. Wu M, Zhang X, Gao S et al (2013) Construction of monodisperse vanadium pentoxide hollow spheres via a facile route and triethylamine sensing property. CrystEngComm 15:10123. https://doi.org/10.1039/c3ce41471j

    Article  CAS  Google Scholar 

  79. Yang T, Yu H, Xiao B et al (2017) Enhanced 1-butylamine gas sensing characteristics of flower-like V2O5 hierarchical architectures. J Alloys Compd 699:921–927. https://doi.org/10.1016/j.jallcom.2017.01.028

    Article  CAS  Google Scholar 

  80. Liu J, Wang X, Peng Q, Li Y (2005) Vanadium pentoxide nanobelts: highly selective and stable ethanol sensor materials. Adv Mater 17:764–767. https://doi.org/10.1002/adma.200400993

    Article  CAS  Google Scholar 

  81. Wang D, Gu K, Zhao Q et al (2018) Synthesis and trimethylamine sensing properties of spherical V 2 O 5 hierarchical structures. New J Chem 42:14188–14193. https://doi.org/10.1039/c8nj02506a

    Article  CAS  Google Scholar 

  82. Xiao B, Huang H, Yu X et al (2018) Facile synthesis of layered V2O5/ZnV2O6heterostructures with enhanced sensing performance. Appl Surf Sci 447:569–575. https://doi.org/10.1016/j.apsusc.2018.04.027

    Article  CAS  Google Scholar 

  83. Patil JV, Mali SS, Kamble AS et al (2017) Electrospinning: a versatile technique for making of 1D growth of nanostructured nanofibers and its applications: an experimental approach. Appl Surf Sci 423:641–674. https://doi.org/10.1016/j.apsusc.2017.06.116

    Article  CAS  Google Scholar 

  84. Zeng W, Chen W, Li Z et al (2015) Rapid and sensitive ethanol sensor based on hollow Au/V2O5 nanotubes via emulsion-electrospinning route. Mater Res Bull 65:157–162. https://doi.org/10.1016/j.materresbull.2015.01.054

    Article  CAS  Google Scholar 

  85. Roy S, Maharana R, Veena M et al (2015) Development of crack free BLT thick films by chemical solution deposition technique. Thin Solid Films 589:686–691. https://doi.org/10.1016/j.tsf.2015.06.054

    Article  CAS  Google Scholar 

  86. Modafferi V, Panzera G, Donato A et al (2012) Highly sensitive ammonia resistive sensor based on electrospun V2O5 fibers. Sensors Actuators B Chem 163:61–68. https://doi.org/10.1016/j.snb.2012.01.007

    Article  CAS  Google Scholar 

  87. Liang J, Zhu K, Yang R, Hu M (2018) Room temperature NO2 sensing properties of Au-decorated vanadium oxide nanowires sensor. Ceram Int 44:2261–2268. https://doi.org/10.1016/j.ceramint.2017.10.186

    Article  CAS  Google Scholar 

  88. Hakim SA, Liu Y, Zakharova GS, Chen W (2015) Synthesis of vanadium pentoxide nanoneedles by physical vapour deposition and their highly sensitive behavior towards acetone at room temperature. RSC Adv 5:23489–23497. https://doi.org/10.1039/C4RA16564K

    Article  CAS  Google Scholar 

  89. Huotari J, Lappalainen J, Eriksson J et al (2016) Synthesis of nanostructured solid-state phases of V7O16 and V2O5 compounds for ppb-level detection of ammonia. J Alloys Compd 675:433–440. https://doi.org/10.1016/j.jallcom.2016.03.116

    Article  CAS  Google Scholar 

  90. Schneider K, Lubecka M, Czapla A (2016) V2O5 thin films for gas sensor applications. Sensors Actuators B Chem 236:970–977. https://doi.org/10.1016/j.snb.2016.04.059

    Article  CAS  Google Scholar 

  91. Mounasamy V, Mani GK, Ponnusamy D et al (2019) Networked mixed metal oxide (V+4 and Ti+4) nanostructures as potential material for trimethylamine detection. New J Chem. https://doi.org/10.1039/C9NJ00727J

  92. Morrison SR (1987) Mechanism of semiconductor gas sensor operation. Sensors Actuators 11:283–287. https://doi.org/10.1016/0250-6874(87)80007-0

    Article  CAS  Google Scholar 

  93. Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7:143–167. https://doi.org/10.1023/A:1014405811371

    Article  CAS  Google Scholar 

  94. Sahner K, Tuller HL (2010) Novel deposition techniques for metal oxide: prospects for gas sensing. J Electroceram 24:177–199. https://doi.org/10.1007/s10832-008-9554-7

    Article  CAS  Google Scholar 

  95. Acharyya D, Huang KY, Chattopadhyay PP et al (2016) Hybrid 3D structures of ZnO nanoflowers and PdO nanoparticles as a highly selective methanol sensor. Analyst 141:2977–2989. https://doi.org/10.1039/C6AN00326E

    Article  CAS  PubMed  Google Scholar 

  96. Abdul Hakim S, Liu Y, Lu Y, Chen W (2015) Room temperature highly selective ethanol sensing behavior of hydrothermally prepared Te-V2O5 nanorod nanocomposites. Mater Sci Semicond Process 31:630–638. https://doi.org/10.1016/j.mssp.2014.12.065

    Article  CAS  Google Scholar 

  97. Liang J, Li W, Liu J, Hu M (2016) Room temperature NO2 sensing performance of free-standing mesh-structure vanadium dioxide nanorods by a chemical vapour deposition method. J Alloys Compd 687:845–854. https://doi.org/10.1016/j.jallcom.2016.06.142

    Article  CAS  Google Scholar 

  98. Yu M, Liu X, Wang Y et al (2012) Gas sensing properties of p-type semiconducting vanadium oxide nanotubes. Appl Surf Sci 258:9554–9558. https://doi.org/10.1016/j.apsusc.2012.05.120

    Article  CAS  Google Scholar 

  99. Qiang X, Hu M, Zhou L, Liang J (2018) Pd nanoparticles incorporated porous silicon/V2O5nanopillars and their enhanced p-type NO2-sensing properties at room temperature. Mater Lett 231:194–197. https://doi.org/10.1016/j.matlet.2018.08.057

    Article  CAS  Google Scholar 

  100. Basyooni MA, Shaban M, El Sayed AM (2017) Enhanced gas sensing properties of spin-coated Na-doped ZnO nanostructured films. Sci Rep 7:1–12. https://doi.org/10.1038/srep41716

    Article  CAS  Google Scholar 

  101. Zaki SE, Basyooni MA, Shaban M et al (2019) Role of oxygen vacancies in vanadium oxide and oxygen functional groups in graphene oxide for room temperature CO2 gas sensors. Sensors Actuators A Phys 294:17–24. https://doi.org/10.1016/j.sna.2019.04.037

    Article  CAS  Google Scholar 

  102. Li Z, Liu Y, Guo D et al (2018) Sensors and actuators B: chemical room-temperature synthesis of CuO/reduced graphene oxide nanohybrids for high-performance NO 2 gas sensor. Sensors Actuators B Chem 271:306–310. https://doi.org/10.1016/j.snb.2018.05.097

    Article  CAS  Google Scholar 

  103. Mane AA, Suryawanshi MP, Kim JH, Moholkar AV (2017) Superior selectivity and enhanced response characteristics of palladium sensitized vanadium pentoxide nanorods for detection of nitrogen dioxide gas. J Colloid Interface Sci 495:53–60. https://doi.org/10.1016/j.jcis.2017.01.120

    Article  CAS  PubMed  Google Scholar 

  104. Mane AA, Nikam SA, Moholkar AV (2018) NO 2 gas sensing properties of sprayed composite porous MoO3-V2O5 thin films. Mater Chem Phys 216:294–304. https://doi.org/10.1016/j.matchemphys.2018.05.043

    Article  CAS  Google Scholar 

  105. Han SD, Moon HG, Noh M-S et al (2017) Self-doped nanocolumnar vanadium oxides thin films for highly selective NO2 gas sensing at low temperature. Sensors Actuators B Chem 241:40–47. https://doi.org/10.1016/j.snb.2016.10.029

    Article  CAS  Google Scholar 

  106. Qi JJ, Gao S, Chen K et al (2015) Vertically aligned, double-sided, and self-supported 3D WO 3 nanocolumn bundles for low-temperature gas sensing. J Mater Chem A 3:18019–18026. https://doi.org/10.1039/C5TA03711E

    Article  CAS  Google Scholar 

  107. Lee SC, Hwang BW, Lee SJ et al (2011) A novel tin oxide-based recoverable thick film SO2 gas sensor promoted with magnesium and vanadium oxides. Sensors Actuators B Chem 160:1328–1334. https://doi.org/10.1016/j.snb.2011.09.070

    Article  CAS  Google Scholar 

  108. Das S, Chakraborty S, Parkash O et al (2008) Vanadium doped tin dioxide as a novel sulfur dioxide sensor. Talanta 75:385–389. https://doi.org/10.1016/j.talanta.2007.11.010

    Article  CAS  PubMed  Google Scholar 

  109. Izu N, Hagen G, Schönauer D et al (2011) Application of V2O5/WO3/TiO2 for resistive-type SO2 sensors. Sensors 11:2982–2991. https://doi.org/10.3390/s110302982

    Article  CAS  PubMed  Google Scholar 

  110. Xu Y, Zhou X, Toft Sørensen O (2000) Oxygen sensors based on semiconducting metal oxides: an overview. Sensors Actuators B Chem 65:2–4. https://doi.org/10.1016/S0925-4005(99)00421-9

    Article  CAS  Google Scholar 

  111. Sharma R, Bhatnagar M, Sharma G (2002) Mechanism in Nb doped titania oxygen gas sensor. Sensors Actuators B Chem 46:194–201. https://doi.org/10.1016/s0925-4005(98)00111-7

    Article  Google Scholar 

  112. Becker T, Tomasi L, Bosch-V.braunmühl C, et al (1999) Ozone detection using low-power-consumption metal-oxide gas sensors. Sensors Actuators A Phys 74:229–232. https://doi.org/10.1016/S0924-4247(98)00301-X

  113. Gavalas S, Gagaoudakis E, Katerinopoulou D et al (2019) Vanadium oxide nanostructured thin films prepared by aerosol spray pyrolysis for gas sensing and thermochromic applications. Mater Sci Semicond Process 89:116–120. https://doi.org/10.1016/j.mssp.2018.09.008

    Article  CAS  Google Scholar 

  114. Ishihara T, Arai H, Eguchi K (1989) The mixed oxide A12O3-V2O5 as a semiconductor gas sensor for NO and NO2. Sensors and Actuators 19:259–265

    Article  CAS  Google Scholar 

  115. Wöllenstein J, Scheulin M, Herres N et al (2003) Gas sensitive behaviour and morphology of reactive evaporated V2O5 thin films. Sensors Mater 15:239

    Google Scholar 

  116. He X, Li J, Gao X (2005) Effect of V2O5 coating on NO2 sensing properties of WO3 thin films. Sensors Actuators B Chem 108:207–210. https://doi.org/10.1016/j.snb.2005.01.044

    Article  CAS  Google Scholar 

  117. Kim HS, Jin CH, Park SH, Lee CM (2013) Structural, luminescent, and NO2 sensing properties of SnO 2-core/V2O5-shell nanorods. J Electroceram 30:6–12. https://doi.org/10.1007/s10832-012-9687-6

    Article  CAS  Google Scholar 

  118. Khan MI, Putrevu NR, Ayesh S et al (2013) Crystalline framework material containing arrays of vanadium oxide nanoclusters: a polyoxovanadate framework with room temperature NOxsensing properties. Cryst Growth Des 13:4667–4672. https://doi.org/10.1021/cg4007444

    Article  CAS  Google Scholar 

  119. Yan W, Hu M, Wang D, Li C (2015) Applied surface science room temperature gas sensing properties of porous silicon/V2O5 nanorods composite. Appl Surf Sci 346:216–222. https://doi.org/10.1016/j.apsusc.2015.01.020

    Article  CAS  Google Scholar 

  120. Liang Y-C, Cheng Y-R (2015) A combinational physical synthesis methodology and crystal feature correlated oxidizing gas detection ability of one-dimensional ZnO-VOx crystalline hybrids. CrystEngComm 17:5801–5807. https://doi.org/10.1039/C5CE01110H

    Article  CAS  Google Scholar 

  121. Mane AA, Nikam SA, Moholkar AV (2018) NO2 gas sensing properties of sprayed composite porous MoO3-V2O5 thin films. Mater Chem Phys 216:294–304. https://doi.org/10.1016/j.matchemphys.2018.05.043

    Article  CAS  Google Scholar 

  122. Schneider K, Maziarz W (2018) V2O5 thin films as nitrogen dioxide sensors †. Sensors 18:4177. https://doi.org/10.3390/s18124177

    Article  CAS  Google Scholar 

  123. Mane AA, Maldar PS, Dabhole SH et al (2019) Effect of substrate temperature on physicochemical and gas sensing properties of sprayed orthorhombic V2O5thin films. Meas J Int Meas Confed 131:223–234. https://doi.org/10.1016/j.measurement.2018.08.042

    Article  Google Scholar 

  124. Prajapati CS, Bhat N (2018) Growth optimization, morphological, electrical and sensing characterization of V2O5 films for SO2 sensor chip. Proc IEEE Sensors 2018-Octob:1–4. https://doi.org/10.1109/ICSENS.2018.8589650

  125. Zhuiykov S, Wlodarski W, Li Y (2001) Nanocrystalline V2O5–TiO2 thin-films for oxygen sensing prepared by sol–gel process. Sensors Actuators B Chem 77:484–490. https://doi.org/10.1016/S0925-4005(01)00739-0

    Article  CAS  Google Scholar 

  126. Raghu AV, Karuppanan KK, Pullithadathil B (2018) Highly sensitive, temperature-independent oxygen gas sensor based on anatase TiO2 nanoparticle grafted, 2D mixed valent VOx nanoflakelets. ACS Sensors 3:1811–1821. https://doi.org/10.1021/acssensors.8b00544

    Article  CAS  PubMed  Google Scholar 

  127. Sanger A, Kumar A, Kumar A et al (2016) A fast response/recovery of hydrophobic Pd/V2O5 thin films for hydrogen gas sensing. Sensors Actuators B Chem 236:16–26. https://doi.org/10.1016/j.snb.2016.05.141

    Article  CAS  Google Scholar 

  128. Simo A, Mwakikunga B, Sone BT et al (2014) VO2 nanostructures based chemiresistors for low power energy consumption hydrogen sensing. Int J Hydrog Energy 39:8147–8157. https://doi.org/10.1016/j.ijhydene.2014.03.037

    Article  CAS  Google Scholar 

  129. Schneider K (2018) Point defect structure and gas sensing properties of V2O5 thin films deposited by RF reactive sputtering. In: 2018 XV International Scientific Conference on Optoelectronic and Electronic Sensors (COE). IEEE, pp 1–4

  130. Chimowa G, Tshabalala ZP, Akande AA et al (2017) Improving methane gas sensing properties of multi-walled carbon nanotubes by vanadium oxide filling. Sensors Actuators B Chem 247:11–18. https://doi.org/10.1016/j.snb.2017.02.167

    Article  CAS  Google Scholar 

  131. Liang J, Liu J, Li N, Li W (2016) Magnetron sputtered Au-decorated vanadium oxides composite thin films for methane-sensing properties at room temperature. J Alloys Compd 671:283–290. https://doi.org/10.1016/j.jallcom.2016.02.003

    Article  CAS  Google Scholar 

  132. Schilling O, Colbow K (1994) A mechanism for sensing reducing gases with vanadium pentoxide films. Sensors Actuators B Chem 21:151–157. https://doi.org/10.1016/0925-4005(94)80017-0

    Article  CAS  Google Scholar 

  133. Imawan C, Steffes H, Solzbacher F, Obermeier E (2001) Structural and gas-sensing properties of V2O5-MoO3 thin films for H2 detection. Sensors Actuators B Chem 77:346–351. https://doi.org/10.1016/S0925-4005(01)00732-8

    Article  CAS  Google Scholar 

  134. Byon JW, Kim M Bin, Kim MH, et al (2012) Electrothermally induced highly responsive and highly selective vanadium oxide hydrogen sensor based on metal-insulator transition. J Phys Chem C 116:226–230. https://doi.org/10.1021/jp2080989

  135. Byon JW, Park J, Kim SY et al (2013) Unprecedented insulator-to-metal transition dynamics by heterogeneous catalysis in Pd-sensitized single vanadium oxide nanowires. J Phys Chem C 117:21864–21869. https://doi.org/10.1021/jp407273s

    Article  CAS  Google Scholar 

  136. Schneider K, Lubecka M, Czapla A (2015) V2O5 thin films for gas sensor applications. Sensors Actuators B Chem:2–9. https://doi.org/10.1016/j.snb.2016.04.059

  137. Xu X, Yin M, Li N et al (2017) Vanadium-doped tin oxide porous nanofibers: enhanced responsivity for hydrogen detection. Talanta 167:638–644. https://doi.org/10.1016/j.talanta.2017.03.013

    Article  CAS  PubMed  Google Scholar 

  138. Amarnath M, Heiner A, Gurunathan K (2019) Surface bound nanostructures of ternary r-GO/Mn3O4/V2O5 system for room temperature selectivity of hydrogen gas. Ceram Int 0–1. https://doi.org/10.1016/j.ceramint.2019.11.229

  139. Liang J, Liu J, Li W, Hu M (2016) Preparation and room temperature methane sensing properties of platinum-decorated vanadium oxide films. Mater Res Bull 84:332–339. https://doi.org/10.1016/j.materresbull.2016.08.024

    Article  CAS  Google Scholar 

  140. Liang J, Li W, Liu J, Hu M (2016) Room temperature CH4 sensing properties of Au decorated VO2 nanosheets. Mater Lett 184:92–95. https://doi.org/10.1016/j.matlet.2016.08.030

    Article  CAS  Google Scholar 

  141. Li W, Liang J, Liu J et al (2016) Synthesis and room temperature CH4 gas sensing properties of vanadium dioxide nanorods. Mater Lett 173:199–202. https://doi.org/10.1016/j.matlet.2016.03.035

    Article  CAS  Google Scholar 

  142. Mounasamy V, Mani GK, Ponnusamy D et al (2020) Investigation on CH4 sensing characteristics of hierarchical V2O5 Nanoflowers operated at relatively low temperature using chemiresistive approach. Anal Chim Acta. https://doi.org/10.1016/j.aca.2020.01.060

  143. Shankar P, Rayappan JBB (2017) Room temperature ethanol sensing properties of ZnO nanorods prepared using electrospun technique. J Mater Chem C. https://doi.org/10.1039/C7TC03771F

  144. Shah AH, Liu Y, Chen W (2017) Synthesis of vanadia nanorod arrays and their novel applications as alco-sensors. Sensors Actuators A Phys 264:18–29. https://doi.org/10.1016/j.sna.2017.07.052

    Article  CAS  Google Scholar 

  145. Qin Y, Zhao L, Cui M (2018) Ultrathin vanadium pentoxide nanobelt for ethanol-sensing applications: experimental and ab initio study. J Alloys Compd 735:1480–1487. https://doi.org/10.1016/j.jallcom.2017.11.232

    Article  CAS  Google Scholar 

  146. Simo A, Kaviyarasu K, Mwakikunga B et al (2017) Room temperature volatile organic compound gas sensor based on vanadium oxide 1-dimension nanoparticles. Ceram Int 43:1347–1353. https://doi.org/10.1016/j.ceramint.2016.10.091

    Article  CAS  Google Scholar 

  147. Mishra RK, Murali G, Kim T et al (2017) Nanocube In2O3@RGO heterostructure based gas sensor for acetone and formaldehyde detection. RSC Adv 7:38714–38724. https://doi.org/10.1039/C7RA05685K

    Article  CAS  Google Scholar 

  148. Mani GK, Rayappan JBB (2015) A highly selective and wide range ammonia sensor-nanostructured ZnO:Co thin film. Mater Sci Eng B 191:41–50. https://doi.org/10.1016/j.mseb.2014.10.007

    Article  CAS  Google Scholar 

  149. Yin H, Song C, Wang Z et al (2019) Self-assembled vanadium oxide nanoflakes for p-type ammonia sensors at room temperature. Nanomaterials 9:317. https://doi.org/10.3390/nano9030317

    Article  CAS  PubMed Central  Google Scholar 

  150. Park S-H, Ryu J-Y, Choi H-H, Kwon T-H (1998) Zinc oxide thin film doped with Al2O3, TiO2 and V2O5 as sensitive sensor for trimethylamine gas. Sensors Actuators B Chem 46:75–79. https://doi.org/10.1016/S0925-4005(97)00324-9

    Article  Google Scholar 

  151. Grigorieva AV, Badalyan SM, Goodilin EA et al (2010) Synthesis, structure, and sensor properties of vanadium pentoxide nanorods. Eur J Inorg Chem 4:5247–5253. https://doi.org/10.1002/ejic.201000372

    Article  CAS  Google Scholar 

  152. Song X, Xu Q, Xu H, Cao B (2017) Highly sensitive gold-decorated zinc oxide nanorods sensor for triethylamine working at near room temperature. J Colloid Interface Sci 499:67–75. https://doi.org/10.1016/j.jcis.2017.03.092

    Article  CAS  PubMed  Google Scholar 

  153. Mounasamy V, Mani GK, Sukumaran S, et al (2018) Vanadium oxide nanoparticles for dimethylamine vapour detection. In: 2018 International Symposium on Micro-NanoMechatronics and Human Science (MHS). IEEE, pp 1–5

  154. Haonan Zhanga, Yazi Luoa, Ming zhuoa, Ting Yangc, Jiaojiao Liangc, Ming Zhangc, Jianmin Mac, Huigao Duanc QL (2016) Diethylamine gas sensor using V2O5-decorated α-Fe2O3 nanorods as sensing material. RSC Adv

  155. Fu H, Xie H, Yang X et al (2015) Hydrothermal synthesis of silver vanadium oxide (Ag0.35V2O5) nanobelts for sensing amines. Nanoscale Res Lett 10:411. https://doi.org/10.1186/s11671-015-1119-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Perillo PM (2016) Flexible gas sensor based on TiO2 membrane nanotubes for detection of butylamine. Mater Today Commun 7:117–121. https://doi.org/10.1016/j.mtcomm.2016.04.008

    Article  CAS  Google Scholar 

  157. Vijayakumar Y, Mani GK, Ponnusamy D et al (2018) V2O5 nanofibers: potential contestant for high performance xylene sensor. J Alloys Compd 731:805–812. https://doi.org/10.1016/j.jallcom.2017.10.056

    Article  CAS  Google Scholar 

  158. Feng C, Li X, Wang C et al (2014) Facile synthesis benzene sensor based on V2O5-doped SnO 2 nanofibers. RSC Adv 4:47549–47555. https://doi.org/10.1039/C4RA06120A

    Article  CAS  Google Scholar 

  159. Karthikeyan PS, Dhivya P, Deepak Raj P, Sridharan M (2016) V2O5 thin film for 2-propanol vapor sensing. Mater Today Proc 3:1510–1516. https://doi.org/10.1016/j.matpr.2016.04.035

    Article  Google Scholar 

  160. Mai L, Xu L, Gao Q et al (2010) Single β-AgVO 3 nanowire H2S sensor. Nano Lett 10:2604–2608. https://doi.org/10.1021/nl1013184

    Article  CAS  PubMed  Google Scholar 

  161. Mani GK, Rayappan JBB (2015) Selective recognition of hydrogen sulfide using template and catalyst free grown ZnO nanorods. RSC Adv 5:54952–54962. https://doi.org/10.1039/C5RA07804K

    Article  CAS  Google Scholar 

  162. Dhayal Raj A, Pazhanivel T, Suresh Kumar P et al (2010) Self assembled V2O5 nanorods for gas sensors. Curr Appl Phys 10:531–537. https://doi.org/10.1016/j.cap.2009.07.015

    Article  Google Scholar 

  163. Dhayal Raj A, Mangalaraj D, Ponpandian N, Yi JS (2010) Gas sensing properties of chemically synthesized V2O5 thin films. Adv Mater Res 123–125:683–686. https://doi.org/10.4028/www.scientific.net/AMR.123-125.683

    Article  CAS  Google Scholar 

  164. Epifani M, Díaz R, Force C et al (2013) Colloidal counterpart of the TiO2-supported V2O5 system: a case study of oxide-on-oxide deposition by wet chemical techniques. Synthesis, vanadium speciation, and gas-sensing enhancement. J Phys Chem C 117:20697–20705. https://doi.org/10.1021/jp406518w

    Article  CAS  Google Scholar 

  165. Abbasi M, Rozati SM, Irani R, Beke S (2015) Synthesis and gas sensing behavior of nanostructured V2O5 thin films prepared by spray pyrolysis. Mater Sci Semicond Process 29:132–138. https://doi.org/10.1016/j.mssp.2014.01.008

    Article  CAS  Google Scholar 

  166. Wang R, Yang S, Deng R et al (2015) Enhanced gas sensing properties of V2O5 nanowires decorated with SnO2 nanoparticles to ethanol at room temperature. RSC Adv 5:41050–41058. https://doi.org/10.1039/C5RA00530B

    Article  CAS  Google Scholar 

  167. Kruefu V, Pookmanee P, Wisitsoraat A, Phanichphant S (2015) Gas-sensing properties of Pt-V2O5 thin films for ethanol detection. Key Eng Mater 659:259–263. https://doi.org/10.4028/www.scientific.net/KEM.659.259

    Article  Google Scholar 

  168. Jin W, Yan S, An L et al (2015) Enhancement of ethanol gas sensing response based on ordered V2O5 nanowire microyarns. Sensors Actuators B Chem 206:284–290. https://doi.org/10.1016/j.snb.2014.09.064

    Article  CAS  Google Scholar 

  169. Chitra M, Uthayarani K, Rajasekaran N et al (2016) Enhanced ethanol gas sensing performance of zinc-tin-vanadium oxide nanocomposites at room temperature. RSC Adv 6:111526–111538. https://doi.org/10.1039/c6ra24047j

    Article  CAS  Google Scholar 

  170. Evans GP, Powell MJ, Johnson ID et al (2017) Room temperature vanadium dioxide–carbon nanotube gas sensors made via continuous hydrothermal flow synthesis. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2017.07.152

  171. Bakhteeva YA, Podval’naya NV, Volkov VL (2010) Gas-sensing properties of nanostructured MxV2O5 (M = Na, K, Rb, Cs) oxides. Inorg Mater 46:1112–1114. https://doi.org/10.1134/S0020168510100158

    Article  CAS  Google Scholar 

  172. DeMeo D, MacNaughton S, Wang Z et al (2014) Heterogeneous metal-oxide nanowire micro-sensor array for gas sensing. Mater Res Express 1. https://doi.org/10.1088/2053-1591/1/2/025002

  173. Wang C, Li X, Xia F et al (2016) Effect of V2O5-content on electrode catalytic layer morphology and mixed potential ammonia sensor performance. Sensors Actuators B Chem 223:658–663. https://doi.org/10.1016/j.snb.2015.09.145

    Article  CAS  Google Scholar 

  174. Liu F, Sun R, Guan Y et al (2015) Mixed-potential type NH3 sensor based on stabilized zirconia and Ni3V2O8 sensing electrode. Sensors Actuators B Chem 210:795–802. https://doi.org/10.1016/j.snb.2015.01.043

    Article  CAS  Google Scholar 

  175. Huotari J, Cao W, Niu Y et al (2016) Separation of valence states in thin films with mixed V2O5 and V7O16 phases. J Electron Spectros Relat Phenomena 211:47–54. https://doi.org/10.1016/j.elspec.2016.06.001

    Article  CAS  Google Scholar 

  176. Wang C, Li X, Yuan Y et al (2017) Effects of sintering temperature on sensing properties of V2O5-WO3-TiO2 electrode for potentiometric ammonia sensor. Sensors Actuators B Chem 241:268–275. https://doi.org/10.1016/j.snb.2016.09.117

    Article  CAS  Google Scholar 

  177. Huotari J, Lappalainen J (2017) Nanostructured vanadium pentoxide gas sensors for SCR process control. J Mater Sci 52:2241–2253. https://doi.org/10.1007/s10853-016-0517-0

    Article  CAS  Google Scholar 

  178. Kodu M, Berholts A, Kahro T et al (2017) Graphene functionalised by laser-ablated V2O5 for a highly sensitive NH3 sensor. Beilstein J Nanotechnol 8:571–578. https://doi.org/10.3762/bjnano.8.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Evans GP, Powell MJ, Johnson ID et al (2018) Room temperature vanadium dioxide–carbon nanotube gas sensors made via continuous hydrothermal flow synthesis. Sensors Actuators B Chem 255:1119–1129. https://doi.org/10.1016/j.snb.2017.07.152

    Article  CAS  Google Scholar 

  180. Meng W, Wang L, Li Y, et al (2018) Enhanced sensing performance of mixed potential ammonia gas sensor based on Bi0.95Ni0.05VO3.975by silver. Sensors Actuators, B Chem 259:668–676. https://doi.org/10.1016/j.snb.2017.12.120

  181. Thangarasu R, Thangavel E, Chandrasekaran J, Balasundaram ON (2019) Synthesis, characterization and gas sensing performance of V2O5 nano-structure on PET substrate. J Mater Sci Mater Electron 30:4238–4249. https://doi.org/10.1007/s10854-019-00715-4

    Article  CAS  Google Scholar 

  182. Birajdar SN, Hebalkar NY, Pardeshi SK et al (2019) Ruthenium-decorated vanadium pentoxide for room temperature ammonia sensing. RSC Adv 9:28735–28745. https://doi.org/10.1039/c9ra04382a

    Article  CAS  Google Scholar 

  183. Mounasamy V, Mani GK, Ponnusamy D et al (2019) Sub-ppm level detection of trimethylamine using V2O3-Cu2O mixed oxide thin films. Ceram Int 45:19528–19533. https://doi.org/10.1016/j.ceramint.2019.06.074

    Article  CAS  Google Scholar 

  184. Raible I, Burghard M, Schlecht U et al (2005) V2O5 nanofibres: novel gas sensors with extremely high sensitivity and selectivity to amines. Sensors Actuators B Chem 106:730–735. https://doi.org/10.1016/j.snb.2004.09.024

    Article  CAS  Google Scholar 

  185. Liang J, Yang R, Zhu K, Hu M (2018) Room temperature acetone-sensing properties of branch-like VO2 (B)@ZnO hierarchical hetero-nanostructures. J Mater Sci Mater Electron 29:3780–3789. https://doi.org/10.1007/s10854-017-8313-4

    Article  CAS  Google Scholar 

  186. Rong C, Weiyi H, Xiangbo L, et al (2019) The preparation of grid-textured V2O5 films and its potential applications in gas sensing. Sci CHINA Technol Sci 51:. https://doi.org/10.1007/s11431-018-9474-6

  187. Yao D, Dong C, Bing Q et al (2019) Oxygen-defective ultrathin BiVO4 nanosheets for enhanced gas sensing. ACS Appl Mater Interfaces 11:23495–23502. https://doi.org/10.1021/acsami.9b05626

    Article  CAS  PubMed  Google Scholar 

  188. Yeh B-Y, Jian B-S, Wang G-J, Tseng WJ (2017) CuO/V2O5 hybrid nanowires for highly sensitive and selective H 2 S gas sensor. RSC Adv 7:49605–49612. https://doi.org/10.1039/C7RA06657K

    Article  CAS  Google Scholar 

  189. Bolokang AS, Motaung DE (2019) Reduction-oxidation of V2O5 -WO3 nanostructured by ball milling and annealing: their improved H 2 S gas sensing performance. Appl Surf Sci 473:164–173. https://doi.org/10.1016/j.apsusc.2018.12.105

    Article  CAS  Google Scholar 

  190. Jha RK, Sakhuja N, Jakhar S, Bhat N (2019) Hydrogen sulfide gas sensing capabilities of solution processed vanadium pentoxide nanosheets. IEEE Trans Nanotechnol 18:932–939. https://doi.org/10.1109/TNANO.2019.2939295

    Article  CAS  Google Scholar 

  191. Vijayakumar Y, Mani GK, Reddy MVR, Rayappan JBB (2015) Nanostructured flower like V2O5 thin films and its room temperature sensing characteristics. Ceram Int 41:2221–2227. https://doi.org/10.1016/j.ceramint.2014.10.023

    Article  CAS  Google Scholar 

  192. Cao PJ, Gui XG, Navale ST et al (2020) Design of flower-like V2O5 hierarchical nanostructures by hydrothermal strategy for the selective and sensitive detection of xylene. J Alloys Compd 815:152378. https://doi.org/10.1016/j.jallcom.2019.152378

    Article  CAS  Google Scholar 

  193. Zhu H, Zhang Z, Jiang X (2019) Glycothermal synthesis of VO2 (B) nanoparticles for gas sensing application. J Nanosci Nanotechnol 20:1946–1954. https://doi.org/10.1166/jnn.2020.17167

    Article  Google Scholar 

  194. Yu HY, Kang BH, Pi UH et al (2005) V2O5 nanowire-based nanoelectronic devices for helium detection. Appl Phys Lett 86:1–3. https://doi.org/10.1063/1.1954894

    Article  CAS  Google Scholar 

  195. Bochenkov VE, Sergeev GB (2005) Preparation and chemiresistive properties of nanostructured materials. Adv Colloid Interf Sci 116:245–254. https://doi.org/10.1016/j.cis.2005.05.004

    Article  CAS  Google Scholar 

  196. Yin H, Yu K, Peng H, et al (2012) Porous V2O5 micro/nano-tubes: synthesis via a CVD route, single-tube-based humidity sensor and improved Li-ion storage properties. J Mater Chem 5013–5019. https://doi.org/10.1039/c2jm15494c

  197. Akande AA, Linganiso EC, Dhonge BP et al (2015) Phase evolution of vanadium oxides obtained through temperature programmed calcinations of ammonium vanadate in hydrogen atmosphere and their humidity sensing properties. Mater Chem Phys 151:206–214. https://doi.org/10.1016/j.matchemphys.2014.11.055

    Article  CAS  Google Scholar 

  198. Takei K, Takahashi T, Ho JC et al (2010) Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat Mater 9:821–826. https://doi.org/10.1038/nmat2835

    Article  CAS  PubMed  Google Scholar 

  199. Ma Z (2011) An electronic second skin. Science (80- ) 333:830–831. https://doi.org/10.1126/science.1209094

  200. Liao F, Zhu Z, Yan Z, et al (2017) Ultrafast response flexible breath sensor based on vanadium dioxide J Breath Res 11:. https://doi.org/10.1088/1752-7163/aa757e

Download references

Acknowledgements

Authors VM and MS wish to thank SASTRA Deemed to be University for the infrastructure facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sridharan Madanagurusamy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mounasamy, V., Mani, G.K. & Madanagurusamy, S. Vanadium oxide nanostructures for chemiresistive gas and vapour sensing: a review on state of the art. Microchim Acta 187, 253 (2020). https://doi.org/10.1007/s00604-020-4182-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-4182-2

Keywords

Navigation