Skip to main content

Hierarchical Oxide Nanostructures-Based Gas Sensor: Recent Advances

  • Chapter
  • First Online:
Functional Nanomaterials

Abstract

Chemoresistive sensors based on metal oxide semiconductor (MOS) materials have been extensively investigated for the sake of identifying various toxic, hazardous, and explosive gases owing to their exceptional benefits, for example, such as outstanding sensitivity, cost-effectiveness, ease of fabrication, and facile integration. Over the years, it has been understood that factors that signifies sensing properties such as gas response, selectivity, stability, and promptness to response/recovery relies upon materials and morphology sensing materials, transducer designs, and few other factors. However, sluggish response, selectivity issues in real environment, higher operational temperature, and thermomechanical stability limits its widespread applications in the field of gases as well as organic vapor monitoring. In view of the above challenges, severe efforts have been made by scientific community to offset the as-described deficiencies by multiple strategies. In this aspect, oxide-based hierarchical nanostructures display strong interactions with the reacting species, eventually yielding outstanding sensing properties in comparison to other simple nano- and/or microstructures. A vast range of diverse morphologies and nano-, micro-, or mesoscale structures have been studied during recent past, each one revealing promising sensing properties toward specific chemical compounds. This chapter summarizes a comprehensive database based on previous notable works as well as latest developments in the synthesis, fabrication, and characterization of hierarchical metal oxide-based gas sensors for multiple applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seiyama T, Kato A, Fujush K, Magatain M (1962) A new detector for gases component using semiconductor thin-film. Anal Chem 34:1052–1053

    Article  Google Scholar 

  2. Das S, Jayaraman V (2014) SnO2: a comprehensive review on structures and gas sensors. Prog Mater Sci 66:112–255

    Article  CAS  Google Scholar 

  3. Afzal A, Cioffi N, Sabbatini L, Torsi L (2012) NOx sensors based on semiconducting metal oxide nanostructures: progress and perspectives. Sens Actuators B 171:25–42

    Article  CAS  Google Scholar 

  4. Korotcenkov G (2007) Metal oxides for solid-state gas sensors: what determines our choice. Mater Sci Eng B 139:1–23

    Article  CAS  Google Scholar 

  5. Chen X, Mao SS (2007) Titanium oxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  6. Lakes R (1993) Materials with structural hierarchy. Nature 361:511–515

    Article  Google Scholar 

  7. Pan N (2014) Exploring the significance of structural hierarchy in material systems—a review. Appl Phys Rev 1:021302, N

    Google Scholar 

  8. Lee J (2009) Chemical gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens Actuators B 140:319–336

    Article  CAS  Google Scholar 

  9. Zappa D, Galstyan V, Kaur N, Arachchige Munasinghe HMM, Sisman O, Comini E (2018) “Metal oxide-based heterostructures for gas sensors”—a review. Anal Chim Acta 1039:1–23

    Article  CAS  Google Scholar 

  10. Zhu KM, Ma SY (2019) Preparations of Bi-doped SnO2 hierarchical flower-shaped nanostructures with highly sensitive HCHO sensing properties. Mater Lett 236:491–494

    Article  CAS  Google Scholar 

  11. Zhang C, Zhou Y, Zhang Y, Zhao S, Fang J, Sheng X, Zhang H (2017) A novel hierarchical TiO2@Pt@mSiO2 hollow nanocatalyst with enhanced thermal stability. J Alloys Compd 701:780–787

    Article  CAS  Google Scholar 

  12. Huang M, Zhang Y, Zhou Y, Zhang C, Zhao S, Fang J, Gao Y, Sheng X (2017) Synthesis and characterization of hollow ZrO2–TiO2/Au spheres as a highly thermal stability nanocatalyst. J Colloid Interface Sci 497:23–32

    Article  CAS  Google Scholar 

  13. Li W, Fu H, Jin Q, Jin H, Haick H, Wanga S, Yua K, Dengh S, Wanga Y (2019) Sens Actuators B: Chem 292:148–155

    Article  CAS  Google Scholar 

  14. Zhang X, Lan W, Xu J, Luo Y, Pan J, Liao C, Yang L, Tan W, Huang X (2019) ZIF-8 derived hierarchical hollow ZnO nanocages with quantum dots for sensitive ethanol gas detection. Sens Actuators B Chem 289:144–152

    Article  CAS  Google Scholar 

  15. Wang X, Ahmad M, Sun H (2017) Three-dimensional ZnO hierarchical nanostructures: solution phase synthesis and applications. Materials 10(11):1304

    Google Scholar 

  16. Xiao FX, Pagliaro M, Xu YJ, Liu B (2016) Layer-by-layer assembly of versatile nanoarchitectures with diverse dimensionality: a new perspective for rational construction of multilayer assemblies. Chem Soc Rev 45:3088–3121

    Article  CAS  Google Scholar 

  17. Du N, Zhang H, Chen J, Sun J, Chen B, Yang D (2008) Metal oxide and sulfide hollow spheres: layer-by-layer synthesis and their application in lithium-ion battery. J Phys Chem B 112:14836–14842

    Article  CAS  Google Scholar 

  18. Caruso F, Spasova M, Susha A, Giersig M, Caruso RA (2001) Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach. Chem Mater 13:109–116

    Article  CAS  Google Scholar 

  19. Rahemi AS, Sabour Rouh AA, Nazari M, Bayat A, Yazdani E, Saievar-Iranizad E (2019) A comprehensive review on ultrasonic spray pyrolysis technique: mechanism, main parameters and applications in condensed matter. J Anal Appl Pyrolysis 104631

    Google Scholar 

  20. Cai Y, Li X, Liu Y, Du S, Cheng P, Liu F, Shimanoe K, Yamazoe N, Lu G (2014) Hollow cylinder ZnO/SnO2 nanostructures synthesized by ultrasonic spray pyrolysis and their gas-sensing performance. CrystEngComm 16:6135–6140

    Article  CAS  Google Scholar 

  21. Singkammo S, Wisitsoraat A, Tuantranont A, Phanichphant S, Yodsri V, Liewhiran C (2018) Catalytic roles of Sm2O3 dopants on ethylene oxide sensing mechanisms of flame-made SnO2 nanoparticles. Appl Surf Sci 454:30–45

    Article  CAS  Google Scholar 

  22. Zu B, Dai R, Pan ZW, Wang ZL (2003) Novel nanostructures of functional oxides synthesized by thermal evaporation advanced functional materials 9–24

    Google Scholar 

  23. Altintas Yildirim O (2019) Efficient vapor-liquid-solid synthesis of copper doped zinc oxide (Cu:ZnO) nanonails with highly homogeneous dopant distribution. Mater Sci Semicond Process 101:238–246

    Article  CAS  Google Scholar 

  24. Yildir Altint O, Liu Y, Petford-Long AK (2015) Synthesis of uniformly distributed single- and double-sided zinc oxide (ZnO) nanocombs. J Cryst Growth 430:34–40

    Article  CAS  Google Scholar 

  25. Yang BP, Yan H, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R, Choi H (2002) Controlled growth of ZnO nanowires and their optical properties. Adv Funct Mater 323–331

    Google Scholar 

  26. Park JY, Park YK, Kim SS (2011) Formation of networked ZnO nanowires by vapor phase growth and their sensing properties with respect to CO. Mater Lett 65:2755–2757

    Article  CAS  Google Scholar 

  27. Her YC, Yeh BY, Huang SL (2014) Vapor-solid growth of p-Te/n-SnO2 hierarchical heterostructures and their enhanced room-temperature gas sensing properties. ACS Appl Mater Interfaces 6:9150–9159

    Article  CAS  Google Scholar 

  28. Dai Y, Zhang Y, Li QK, Nan CW (2002) Synthesis and optical properties of tetra pod-like zinc oxide nanorods. Chem Phys Lett 358:83–86

    Article  CAS  Google Scholar 

  29. Sun S, Meng G, Zhang G, Masse JP, Zhang L (2007) Controlled growth of SnO2 hierarchical nanostructures by a multistep thermal vapor deposition process. Chem—Eur J 13:9087–9092

    Article  CAS  Google Scholar 

  30. Vomiero A, Bianchi S, Comini E, Faglia G, Ferroni M, Poli N, Sberveglieri G (2007) In2O3 nanowires for gas sensors: morphology and sensing characterization. Thin Solid Films 515:8356–8359

    Article  CAS  Google Scholar 

  31. Tharsika T, Haseeb ASMA, Akbar SA, Mohd Sabri MF, Hoong WY (2014) Enhanced ethanol gas sensing properties of SnO2-core/ZnO-shell nanostructures. Sensors (Switzerland) 14:14586–14600

    Article  CAS  Google Scholar 

  32. Yan YG, Zhang Y, Zeng HB, De ZL (2007) In2O3 nanotowers: controlled synthesis and mechanism analysis. Cryst Growth Des 7:940–943

    Article  CAS  Google Scholar 

  33. Sui R, Charpentier P (2012) Synthesis of metal oxide nanostructures by direct sol-gel chemistry in supercritical fluids. Chem Rev 112:3057–3082

    Article  CAS  Google Scholar 

  34. Dong Q, Su H, Zhang D, Zhang F (2006) Fabrication and gas sensitivity of SnO2 hierarchical films with interwoven tubular conformation by a biotemplate-directed sol-gel technique. Nanotechnology 17:3968–3972

    Article  CAS  Google Scholar 

  35. Deng H, Li H, Wang, F, Yuan xin C, Liu S, Wang P, Xie LZ, Sun Y, Chang F (2016) A high sensitive and low detection limit of formaldehyde gas sensor based on hierarchical flower-like CuO nanostructure fabricated by sol–gel method. J Mater Sci: Mater Electron 27:6766–6772

    Google Scholar 

  36. Song F, Su H, Han J, Xu J, Zhang D (2010) Controllable synthesis and gas response of biomorphic SnO2 with architecture hierarchy of butterfly wings. Sens Actuators B Chem 145:39–45

    Article  CAS  Google Scholar 

  37. Imran M, Motta N, Shafiei M (2018) Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials 9:2128–2170

    Google Scholar 

  38. Li F, Zhang T, Gao X, Wang R, Li B (2017) Coaxial electro spinning heterojunction SnO2/Au-doped In2O3 core-shell nanofibers for acetone gas sensor. Sens Actuators B Chem 252:822–830

    Article  CAS  Google Scholar 

  39. Kanjwal MA, Sheikh FA, Barakat NAM, Chronakis IS, Kim H (2011) Co3O4–ZnO hierarchical nanostructures by electrospinning and hydrothermal methods. Appl Surf Sci 257:7975–7981

    Article  CAS  Google Scholar 

  40. Yang HX, Qian JF, Chen ZX, XP Ai, Cao YL (2007) Multilayered nanocrystalline SnO2 14067–14071

    Google Scholar 

  41. Zhang H, Wu J, Zhai C, Du N, Ma X, Yang D (2007) From ZnO nanorods to 3D hollow microhemispheres: solvothermal synthesis, photoluminescence and gas sensor properties. Nanotechnology 18:45

    CAS  Google Scholar 

  42. Xu X, Zhao P, Wang D, Sun P, You L, Sun Y, Liang X, Liu F, Chen H, Lu G (2013) Preparation and gas sensing properties of hierarchical flower-like In2O3 microspheres. Sens Actuators B Chem 176:405–412

    Article  CAS  Google Scholar 

  43. Li N, Fan Yu, Shi Y, Xiang Q, Wang X, Xu J (2019) J A low-temperature formaldehyde gas sensor based on hierarchical SnO/SnO2 nano-flowers assembled from ultrathin nanosheets: synthesis, sensing performance and mechanism. Sens Actuators B Chem 294:106–115

    Article  CAS  Google Scholar 

  44. Guan X, Wang Y, Luo P, Yu Y, Chen D, Li X (2019) Incorporating N atoms into SnO2 nanostructure as an approach to enhance gas sensing property for acetone. Nanomaterials 9:445

    Article  CAS  Google Scholar 

  45. Lu JG, Chang P, Fan Z (2006) Quasi-one-dimensional metal oxide materials synthesis, properties and applications. Mater Sci Eng: R 52:49–91

    Google Scholar 

  46. Hieu HN (2012) Optimization of a zinc oxide urchin-like structure for high-performance gas sensing. J Mater Chem 22:1127–1134

    Article  CAS  Google Scholar 

  47. Sun P (2012) Hydrothermal synthesis of 3D urchin-like α-Fe2O3 nanostructure for gas sensor. Sens Actuators B 173:52–55

    Article  CAS  Google Scholar 

  48. Meng FL (2015) Sub-ppb detection of acetone using Au-modified flower-like hierarchical ZnO structures. Sens Actuators B Chem 219:209–217

    Article  CAS  Google Scholar 

  49. Vuong NM, Chinh ND, Huy BT, Lee Y-I (2016) CuO-decorated ZnO hierarchical nanostructures as efficient and established sensing materials for H2S gas sensors. Sci Rep 6:26736

    Article  CAS  Google Scholar 

  50. Lou Z, Li F, Deng J, Wang L, Zhang T (2013) Branch-like hierarchical heterostructure (α-Fe2O3/TiO2): a novel sensing material for trimethylamine gas sensor. ACS Appl Mater Interfaces 5:12310–12316

    Article  CAS  Google Scholar 

  51. Alenezi MR, Henley SJ, Emerson NG, Silva SRP (2014) From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties. Nanoscale 6:235–247

    Article  CAS  Google Scholar 

  52. Liu Q, Zhang ZY, Li WY, Xu KB, Zou RJ, Hu JQ (2015) Ethanol gas sensor based on a self-supporting hierarchical SnO2 nanorods array. CrystEngComm 17:1800–1804

    Article  CAS  Google Scholar 

  53. Meng FL, Hou NN, Ge S, Sun B, Jin Z, Shen W, Kong LT, Guo Z, Sun YF, Wu H, Wang C, Li MQ (2015) Flowerlike hierarchical structures consisting of porous single-crystalline ZnO nanosheets and their gas sensing properties to volatile organic compounds (VOCs). J Alloys Compd 626:124–130

    Article  CAS  Google Scholar 

  54. Zhu K, Ma S, Tie Y, Zhang Q, Wang W, Pei S, Xu X (2019) Highly sensitive formaldehyde gas sensors based on Y-doped SnO2 hierarchical flower-shaped nanostructures. J Alloys Compd 792:938–944

    Article  CAS  Google Scholar 

  55. Wang L, Fei T, Lou Z, Zhang T (2011) Three-dimensional hierarchical flowerlike α-Fe2O3 nanostructures: synthesis and ethanol-sensing properties. ACS Appl Mater Interfaces 3:4689–4694

    Article  CAS  Google Scholar 

  56. Yin L, Wang H, Li L, Li H, Chen D, Zhang R (2019) Microwave-assisted preparation of hierarchical CuO@rGO nanostructures and their enhanced low-temperature H2S-sensing performance. Appl Surf Sci 476:107–114

    Article  CAS  Google Scholar 

  57. Wang X, Wang Y, Tian F, Liang H, Wang H, Zhao X, Lu Z, Jiang K, Yang L, Lou X (2015) From the surface reaction control to gas-diffusion control: the synthesis of hierarchical porous SnO2 microspheres and their gas-sensing mechanism. J Phys Chem C 119(28):15963–15976

    Google Scholar 

  58. Su C, Zhang L, Han Y, Chen X, Wang S, Zeng M, Hu N, Su Y, Zhou Z, Wei H, Yang Z (2019) Glucose- assisted synthesis of hierarchical flower-like Co3O4 nanostructures assembled by porous nanosheets for enhanced acetone sensing. Sens Actuator B-Chem 288:699–706

    Article  CAS  Google Scholar 

  59. Zhang S, Sun G, Li Y, Zhang B, Wang Y, Zhang Z (2019) Enhanced triethylamine gas sensing performance of the porous Zn2SnO4/SnO2 hierarchical microspheres. J Alloys Compd 785:382–390

    Article  CAS  Google Scholar 

  60. Wang X, Cao R, Zhang S, Hou P, Han R, Shao M, Xu X (2017) Hierarchical flowerlike metal/metal oxides nanostructures derived from layered double hydroxide for catalysis and gas sensing. J Mater Chem A 5:23999–24010

    Article  CAS  Google Scholar 

  61. Zappa D, Galstyan V, Kaur N, Arachchige HMMM, Sisman O, Comini E (2018) “Metal oxide-based heterostructures for gas sensors”—a review. Anal Chim Acta 1039:1–23

    Google Scholar 

  62. Xu L, Su Y, Li S, Chen Y, Zhou Q, Yin S, Feng Y (2007) Self-assembly and hierarchical organization of Ga2O3/In2O3 nanostructures. J Phys Chem B 111(4):760–766

    Article  CAS  Google Scholar 

  63. Zhang R, Zhou T, Zhang T (2018) Functionalization of hybrid 1D SnO2–ZnO nanofibers for formaldehyde detection. Adv Mater Interfaces 1800967:1–9

    Google Scholar 

  64. Qin L, Xu J, Dong X, Pan Q (2008) The template-free synthesis of square-shaped SnO2 nanowires: the temperature effect and acetone gas sensors. Nanotechnology 185705

    Google Scholar 

  65. Wang Y, Pan A, Zhu Q, Nie Z, Zhang Y, Tang Y, Liang S, Cao G (2014) Facile synthesis of nanorod-assembled multi-shelled Co3O4 hollow microspheres for high-performance supercapacitors. J Power Sources 272:107–112

    Article  CAS  Google Scholar 

  66. Lou Z, Li F, Deng J, Wang L, Zhang T (2013) Branch-like hierarchical heterostructure (α -Fe2O3/TiO2): a novel sensing material for trimethylamine gas sensor. ACS Appl Mater Interfaces 5(23):12310–12316

    Article  CAS  Google Scholar 

  67. Li N, Fan Y, Shi Y, Xiang Q, Wang X, Xu J (2019) A low temperature formaldehyde gas sensor based on hierarchical SnO/SnO2 nano-flowers assembled from ultrathin nanosheets: synthesis, sensing performance and mechanism. Sens Actuators B (Chem) 294:106–115

    Article  CAS  Google Scholar 

  68. An D, Mao N, Deng G, Zou Y, Li Y, Wei T, Lian X (2016) Ethanol gas-sensing characteristic of the Zn2SnO4 nanospheres. Ceram Int 42:3535–3541

    Article  CAS  Google Scholar 

  69. Kim H, Choi K, Lee J, Akbar SA (2009) Highly sensitive and ultra-fast responding gas sensors using self-assembled hierarchical SnO2 spheres. Sens Actuators B: Chem 136:138–143

    Article  CAS  Google Scholar 

  70. Van Hieu N, Kim H, Ju B, Lee J (2008) Enhanced performance of SnO2 nanowires ethanol sensor by functionalizing with La2O3. Sens Actuators B: Chem 133:228–234

    Article  CAS  Google Scholar 

  71. Choi K, Kim H, Lee J (2009) Enhanced CO sensing characteristics of hierarchical and hollow In2O3 microspheres. Sens Actuators B: Chem 138:497–503

    Google Scholar 

  72. Zhang Y, He X, Li J, Zhang H, Gao X (2007) Gas-sensing properties of hollow and hierarchical copper oxide microspheres. Sens Actuators B Chem 128:293–298

    Article  CAS  Google Scholar 

  73. Sinha SK (2015) Growth and ammonia sensing properties of Zn1−xSnxO nanofibers. Sens Actuator B-Chem 219:192–198

    Article  CAS  Google Scholar 

  74. Zhang Z, Xu M, Liu L, Ruan X, Yan J, Zhao W, Yun J, Wang Y, Qin S, Zhang T (2018) Novel SnO2@ZnO hierarchical nanostructures for highly sensitive and selective NO2 gas sensing. Sens Actuators B Chem 257:714–727

    Article  CAS  Google Scholar 

  75. Septiani NLW, Kaneti YV, Yuliarto B, Dipojonod NHK, Takei T, You J, Yamauchi Y (2018) Hybrid nanoarchitecturing of hierarchical zinc oxide wool-ball-like nanostructures with multi-walled carbon nanotubes for achieving sensitive and selective detection of sulfur dioxide. Sens Actuators B Chem 261:241–251

    Article  CAS  Google Scholar 

  76. Ponzoni A, Comini E, Sberveglieri G, Zhou J, Deng SZ, Xu NS (2006) Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks. Appl Phys Lett 88:203101–203103

    Article  CAS  Google Scholar 

  77. Li Y, Tao Z, Luo N, Sun G, Zhang B, Jin H, Bala H, Cao J, Zhang Z, Wang Y (2019) Single-crystalline porous nanoplates-assembled ZnO hierarchical microstructure with superior TEA sensing properties. Sens Actuators B Chem 290:607–615

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their endless gratitude to the editorial staffs, reviewers, and others who actively participated in this book chapter. The authors would like to express their sincere thanks to NIT Raipur for providing the basic infrastructural facilities to complete this assignment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip K. Sinha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sinha, S.K., Poddar, S., Ganguly, S. (2020). Hierarchical Oxide Nanostructures-Based Gas Sensor: Recent Advances. In: Thomas, S., Joshi, N., Tomer, V. (eds) Functional Nanomaterials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-4810-9_7

Download citation

Publish with us

Policies and ethics