Skip to main content
Log in

A fluorescent aptasensor for ochratoxin A detection based on enzymatically generated copper nanoparticles with a polythymine scaffold

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A fluorescence enhancement method is presented for the determination of ochratoxin A (OTA). The interaction of OTA with its aptamer causes structural changes which, in turn, change fluorescence of enzymatically generated polythymine-coated copper nanoparticles (CuNPs) (with excitation/emission maxima at 340/625 nm). The OTA-binding aptamer was immobilized on magnetic beads. When it binds OTA, it is partially released and exposes a region with a partly complimentary DNA strand (cDNA). After magnetic separation, the cDNA was employed as a primer to trigger the terminal deoxynucleotidyl transferase-mediated polymerization. This process generates polythymine which act as a template for synthesis of the CuNPs. The method is sensitive in having a 2.0 nM detection limit for OTA. It was successfully applied to the determination of OTA in spiked diluted red wine.

Schematic presentation of a fluorometric enhancement method for ochratoxin A assay based on ochratoxin A inducing structure switching of its aptamer and enzymatically generated polythymine for copper nanoparticles formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bayman P, Baker JL, Doster MA, Michailides TJ, Mahoney NE (2002) Ochratoxin production by the Aspergillus ochraceus group and Aspergillus alliaceus. Appl Environ Microbiol 68(5):2326–2329

    Article  CAS  Google Scholar 

  2. Duarte SC, Pena A, Lino CM (2010) A review on ochratoxin A occurrence and effects of processing of cereal and cereal derived food products. Food Microbiol 27(2):187–198

    Article  CAS  Google Scholar 

  3. Petzinger E, Ziegler K (2000) Ochratoxin A from a toxicological perspective. J Vet Pharmacol Ther 23(2):91–98

    Article  CAS  Google Scholar 

  4. Bauer J, Gareis M (1987) Ochratoxin-a in the food-chain. J Vet Med 34(8):613–627

    Article  CAS  Google Scholar 

  5. Pfohl-Leszkowicz A, Manderville RA (2007) Ochratoxin A: an overview on toxicity and carcinogenicity in animals and humans. Mol Nutr Food Res 51(1):61–99

    Article  CAS  Google Scholar 

  6. Liu JW, Cao ZH, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109(5):1948–1998

    Article  CAS  Google Scholar 

  7. Cruz-Aguado JA, Penner G (2008) Determination of Ochratoxin A with a DNA aptamer. J Agric Food Chem 56(22):10456–10461

    Article  CAS  Google Scholar 

  8. Wang Y, Ning G, Wu Y, Wu S, Zeng B, Liu G, He X, Wang K (2018) Facile combination of beta-cyclodextrin host-guest recognition with exonuclease-assistant signal amplification for sensitive electrochemical assay of ochratoxin A. Biosens Bioelectron 124-125:82–88

    Article  Google Scholar 

  9. Zhou L, Sun N, Xu L, Chen X, Cheng H, Wang J, Pei R (2016) Dual signal amplification by an “on-command” pure DNA hydrogel encapsulating HRP for colorimetric detection of ochratoxin A. RSC Adv 6(115):114500–114504

    Article  CAS  Google Scholar 

  10. Lin C, Zheng H, Sun M, Guo Y, Luo F, Guo L, Qiu B, Lin Z, Chen G (2018) Highly sensitive colorimetric aptasensor for ochratoxin A detection based on enzyme-encapsulated liposome. Anal Chim Acta 1002:90–96

    Article  CAS  Google Scholar 

  11. Lee J, Jeon CH, Ahn SJ, Ha TH (2014) Highly stable colorimetric aptamer sensors for detection of ochratoxin A through optimizing the sequence with the covalent conjugation of hemin. Analyst 139(7):1622–1627

    Article  CAS  Google Scholar 

  12. Zhou Z, Hao N, Zhang Y, Hua R, Qian J, Liu Q, Li H, Zhu W, Wang K (2017) A novel universal colorimetric sensor for simultaneous dual target detection through DNA-directed self-assembly of graphene oxide and magnetic separation. Chem Commun (Camb) 53(52):7096–7099

    Article  CAS  Google Scholar 

  13. Gillibert R, Triba MN, Lamy de la Chapelle M (2017) Surface enhanced Raman scattering sensor for highly sensitive and selective detection of ochratoxin A. Analyst 143(1):339–345

    Article  Google Scholar 

  14. Zhang G, Zhu C, Huang Y, Yan J, Chen A (2018) A lateral flow strip based Aptasensor for detection of Ochratoxin A in corn samples. Molecules 23(2):291

    Article  CAS  Google Scholar 

  15. Lu Z, Chen X, Hu W (2017) A fluorescence aptasensor based on semiconductor quantum dots and MoS2 nanosheets for ochratoxin A detection. Sensors Actuators B Chem 246:61–67

    Article  CAS  Google Scholar 

  16. Lv L, Li D, Cui C, Zhao Y, Guo Z (2017) Nuclease-aided target recycling signal amplification strategy for ochratoxin A monitoring. Biosens Bioelectron 87:136–141

    Article  CAS  Google Scholar 

  17. Lv L, Li D, Liu R, Cui C, Guo Z (2017) Label-free aptasensor for ochratoxin A detection using SYBR gold as a probe. Sensors Actuators B Chem 246:647–652

    Article  CAS  Google Scholar 

  18. Song C, Hong W, Zhang X, Lu Y (2018) Label-free and sensitive detection of Ochratoxin A based on dsDNA-templated copper nanoparticles and exonuclease-catalyzed target recycling amplification. Analyst 143:1829–1834

    Article  CAS  Google Scholar 

  19. Dai S, Wu S, Duan N, Wang Z (2016) A luminescence resonance energy transfer based aptasensor for the mycotoxin Ochratoxin A using upconversion nanoparticles and gold nanorods. Microchim Acta 183(6):1909–1916

    Article  CAS  Google Scholar 

  20. Liu Y, Yan H, Shangguan J, Yang X, Wang M, Liu W (2018) A fluorometric aptamer-based assay for ochratoxin A using magnetic separation and a cationic conjugated fluorescent polymer. Microchim Acta 185(9):254

    Article  Google Scholar 

  21. Rotaru A, Dutta S, Jentzsch E, Gothelf K, Mokhir A (2010) Selective dsDNA-templated formation of copper nanoparticles in solution. Angew Chem Int 49(33):5665–5667

    Article  CAS  Google Scholar 

  22. Song C, Yang X, Wang K, Wang Q, Huang J, Liu J, Liu W, Liu P (2014) Label-free and non-enzymatic detection of DNA based on hybridization chain reaction amplification and dsDNA-templated copper nanoparticles. Anal Chim Acta 827:74–79

    Article  CAS  Google Scholar 

  23. Zhang LL, Zhao JJ, Duan M, Zhang H, Jiang JH, Yu RQ (2013) Inhibition of dsDNA-templated copper nanoparticles by pyrophosphate as a label-free fluorescent strategy for alkaline phosphatase assay. Anal Chem 85(8):3797–3801

    Article  CAS  Google Scholar 

  24. Chen JH, Liu J, Fang ZY, Zeng LW (2012) Random dsDNA-templated formation of copper nanoparticles as novel fluorescence probes for label-free lead ions detection. Chem Commun 48:1057–1059

    Article  CAS  Google Scholar 

  25. Liu H, Ma C, Wang J, Wang K, Wu K (2017) A turn-on fluorescent method for determination of the activity of alkaline phosphatase based on dsDNA-templated copper nanoparticles and exonuclease based amplification. Microchim Acta 184(7):2483–2488

    Article  CAS  Google Scholar 

  26. Qing ZH, He XX, He DG, Wang KM, Xu FZ, Qing TP, Yang X (2013) Poly(thymine)-templated selective formation of fluorescent copper nanoparticles. Angew Chem Int 52(37):9719–9722

    Article  CAS  Google Scholar 

  27. Ye T, Li C, Su C, Ji X, Zheng J, Tinnefeld P, He Z (2015) Enzymatic polymerization of poly(thymine) for the synthesis of copper nanoparticles with tunable size and their application in enzyme sensing. Chem Commun (Camb) 51(41):8644–8647

    Article  CAS  Google Scholar 

  28. Luo L, Xu F, Shi H, He X, Qing T, Lei Y, Tang J, He D, Wang K (2017) Label-free and sensitive assay for deoxyribonuclease I activity based on enzymatically-polymerized superlong poly(thymine)-hosted fluorescent copper nanoparticles. Talanta 169:57–63

    Article  CAS  Google Scholar 

  29. Chen J, Xu Y, Ji X, He Z (2017) Enzymatic polymerization-based formation of fluorescent copper nanoparticles for the nuclease assay. Sensors Actuators B Chem 239:262–269

    Article  CAS  Google Scholar 

  30. Cao J, Wang W, Bo B, Mao X, Wang K, Zhu X (2017) A dual-signal strategy for the solid detection of both small molecules and proteins based on magnetic separation and highly fluorescent copper nanoclusters. Biosens Bioelectron 90:534–541

    Article  CAS  Google Scholar 

  31. Hu W, Ning Y, Kong J, Zhang X (2015) Formation of copper nanoparticles on poly(thymine) through surface-initiated enzymatic polymerization and its application for DNA detection. Analyst 140(16):5678–5684

    Article  CAS  Google Scholar 

  32. Covarelli L, Beccari G, Marini A, Tosi L (2012) A review on the occurrence and control of ochratoxigenic fungal species and ochratoxin A in dehydrated grapes, non-fortified dessert wines and dried vine fruit in the Mediterranean area. Food Control 26(2):347–356

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Natural Science Foundation Project of CQ (No. cstc2018jscx-msybX0263), National Natural Science Foundation of China (No. 21405125), China Agriculture Research System (No. CARS-27) and National Risk Assessment Program for Agricultural Products Quality and Safety (No. GJFP2018003 and GJFP2017013) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue He or Bining Jiao.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.04 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Tian, F., Zhou, J. et al. A fluorescent aptasensor for ochratoxin A detection based on enzymatically generated copper nanoparticles with a polythymine scaffold. Microchim Acta 186, 199 (2019). https://doi.org/10.1007/s00604-019-3314-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3314-z

Keywords

Navigation