Skip to main content
Log in

A luminescence resonance energy transfer based aptasensor for the mycotoxin Ochratoxin A using upconversion nanoparticles and gold nanorods

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a turn-on luminescence resonance energy transfer (LRET) method for the detection of the mycotoxin Ochratoxin A (OTA). It utilizes upconversion nanoparticles (UCNPs) of the type NaYF4: Yb, Er as the energy donor and gold nanorods (Au NRs) as the acceptor. Biotin-labeled OTA aptamers were bound to the surface of the avidin-functionalized UCNPs. The AuNRs, in turn, were modified with thiolated OTA aptamer cDNA via thiol chemistry. The emission band of the UCNPs under 980-nm laser excitation has a maximum peaking at 657 nm and overlaps the absorption band of the AuNRs which peaks at 660 nm. Quenching of luminescence occurs because the hybridization actions shorten the distance between UCNPs and AuNRs. If, however, OTA is added, the two kinds of particles separate again because of the high affinity between OTA and the OTA aptamer. As a result, luminescence is recovered. The calibration plot is linear in the 0.05 to 100 ng mL−1 OTA concentration range, and the limit of detection is 27 pg mL−1. The method was successfully applied to the determination of OTA in beer.

The luminescence of aptamer-modified upconversion nanoparticles (avidin-UCNPs) is quenched by cDNA-modified gold nanorods (AuNRs) due to hybridization. In the presence of Ochratoxin A (OTA), however, the luminescence of the UCNPs recovers due to competitive binding of aptamer to OTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Davis N, Searcy J, Diener U (1969) Production of Ochratoxin A by Aspergillus ochraceus in a Semisynthetic Medium. Appl Microbiol 17(5):742–727

    CAS  Google Scholar 

  2. Bellver J, Fernández M, Ruiz M, Juan A (2014) Presence of Ochratoxin A (OTA) Mycotoxin in Alcoholic Drinks from Southern European Countries: Wine and Beer. J Agric Food Chem 62(31):7643–7651

    Article  Google Scholar 

  3. Lai X, Liu R, Ruan C, Zhang H, Liu C (2015) Occurrence of aflatoxins and ochratoxin A in rice samples from six provinces in China. Food Control 50:401–404

    Article  CAS  Google Scholar 

  4. Bui-Klimke TR, Wu F (2015) Ochratoxin A and Human Health Risk: A Review of the Evidence. Crit Rev Food Sci 55(13):1860–1869

    Article  CAS  Google Scholar 

  5. Majdinasab M, Sheikh-Zeinoddin M, Soleimanian-Zad S, Li P, Zhang Q, Li X, Tang X, Li J (2015) A reliable and sensitive time-resolved fluorescent immunochromatographic assay (TRFICA) for ochratoxin A in agro-products. Food Control 47:126–134

    Article  CAS  Google Scholar 

  6. Wang C, Qian J, Wang K, Wang K, Liu Q, Dong X, Wang C, Huang X (2015) Magnetic-fluorescent-targeting multifunctional aptasensorfor highly sensitive and one-step rapid detection of ochratoxin A. Biosens Bioelectron 68:783–790

    Article  CAS  Google Scholar 

  7. Lee T, Saad B, Salleh B, Mat I (2013) Micro-solid phase extraction of ochratoxin A, and its determination in urine using capillary electrophoresis. Microchim Acta 180(11–12):1149–1156

    Article  CAS  Google Scholar 

  8. Pittet A, Royer D (2002) Rapid, Low Cost Thin-Layer Chromatographic Screening Method for the Detection of Ochratoxin A in Green Coffee at a Control Level of 10 μg/kg. J Agric Food Chem 50:243–247

    Article  CAS  Google Scholar 

  9. Flajs D, Domijan A, Ivic D, Cvjetkovic B, Peraica M (2009) ELISA and HPLC analysis of ochratoxin A in red wines of Croatia. Food Control 20(6):590–592

    Article  CAS  Google Scholar 

  10. Olsson J, Borjesson T, Lundstedt T, Schnurer J (2002) Detection and quantification of ochratoxin A and deoxynivalenol in barley grains by GC-MS and electronic nose. Int J Food Microbiol 72(3):203–214

    Article  CAS  Google Scholar 

  11. Kim S, Lim H (2015) Chemiluminescence immunoassay using magnetic nanoparticles with targeted inhibition for the determination of ochratoxin A. Talanta 140:183–188

    Article  CAS  Google Scholar 

  12. Dhesingh R, K V, Norio M (2007) Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors Actuators B Chem 121(1):158–177

  13. Liu B, Tsao Z, Wang J, Yu F (2008) Development of a Monoclonal Antibody against Ochratoxin A and Its Application in Enzyme-Linked Immunosorbent Assay and Gold Nanoparticle Immunochromatographic Strip. Anal Chem 80:7029–7035

    Article  CAS  Google Scholar 

  14. Chen X, Huang Y, Duan N, Wu S, Xia Y, Ma X, Zhu C, Jiang Y, Ding Z, Wang Z (2014) Selection and characterization of single stranded DNA aptamers recognizing fumonisin B1. Microchim Acta 181(11–12):1317–1324

    Article  CAS  Google Scholar 

  15. Yuan F, Chen HQ, Xu J, Zhang YY, Wu Y, Wang L (2014) Aptamer-Based Luminescence Energy Transfer from Near-Infrared-to-Near-Infrared Upconverting Nanoparticles to Gold Nanorods and Its Application for the Detection of Thrombin. Chem Eur J 20(10):2888–2894

    Article  CAS  Google Scholar 

  16. Lv Z, Chen A, Liu J, Guan Z, Zhou Y, Xu S, Yang S, Li C (2014) A Simple and Sensitive Approach for Ochratoxin A Detection Using a Label-Free Fluorescent Aptasensor. PLoS One 9(1):e85968

    Article  Google Scholar 

  17. Yang L, Zhang Y, Li R, Lin C, Guo L, Qiu B, Lin Z, Chen G (2015) Electrochemiluminescence biosensor for ultrasensitive determination of ochratoxin A in corn samples based on aptamer and hyperbranched rolling circle amplification. Biosens Bioelectron 70:268–274

    Article  CAS  Google Scholar 

  18. Zhu Z, Peng M, Zuo L, Zhu Z, Wang F, Chen L, Li J, Shan G, Luo S (2015) An aptamer based surface plasmon resonance biosensor for the detection of ochratoxin A in wine and peanut oil. Biosens Bioelectron 65:320–326

    Article  CAS  Google Scholar 

  19. Mishra R, Hayat A, Catanante G, Istamboulie G, Marty J (2016) Sensitive quantitation of Ochratoxin A in cocoa beans using differential pulse voltammetry based aptasensor. Food Chem 192:799–804

    Article  CAS  Google Scholar 

  20. Stanisavljevic M, Krizkova S, Vaculovicova M, Kizek R, Adam V (2015) Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application. Biosens Bioelectron 74:562–574

    Article  CAS  Google Scholar 

  21. Li X, Zhang F, Zhao D (2015) Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure. Chem Soc Rev 44(6):1346–1378

    Article  CAS  Google Scholar 

  22. Tu D, Zheng W, Liu Y, Zhu H, Chen X (2014) Luminescent biodetection based on lanthanide-doped inorganic nanoprobes. Coord Chem Rev 273:13–29

    Article  Google Scholar 

  23. Zhou F, Noor M, Krull U (2014) Luminescence Resonance Energy Transfer-Based Nucleic Acid Hybridization Assay on Cellulose Paper with Upconverting Phosphor as Donors. Anal Chem 86(5):2719–2726

    Article  CAS  Google Scholar 

  24. Saleh S, Ali R, Hirsch T, Wolfbeis O (2011) Detection of biotin-avidin affinity binding by exploiting a self-referenced system composed of upconverting luminescent nanoparticles and gold nanoparticles. J Nanoparticle Res 13(10):4603–4611

    Article  CAS  Google Scholar 

  25. Ong L, Ang L, Alonso S, Zhang Y (2014) Bacterial imaging with photostable upconversion fluorescent nanoparticles. Biomater 35(9):2987–2998

    Article  CAS  Google Scholar 

  26. Li Z, Lv S, Wang Y, Chen S, Liu Z (2015) Construction of LRET-Based Nanoprobe Using Upconversion Nanoparticles with Confined Emitters and Bared Surface as Luminophore. J Am Chem Soc 137(9):3421–3427

    Article  CAS  Google Scholar 

  27. Yang YM (2014) (2014) Upconversion nanophosphors for use in bioimaging, therapy, drug delivery and bioassays. Microchim Acta 181:263–294

    Article  CAS  Google Scholar 

  28. Song C, Ye Z, Wang G, Yuan J, Guan Y (2010) Core-Shell Nanoarchitectures: A Strategy To Improve the Efficiency of Luminescence Resonance Energy Transfer. ACS Nano 4(9):5389–5397

    Article  CAS  Google Scholar 

  29. Kelkar S, Xue L, Turner S, Reineke T (2014) Lanthanide-containing polycations for monitoring polyplex dynamics via lanthanide resonance energy transfer. Biomacromolecules 15(5):1612–1624

    Article  CAS  Google Scholar 

  30. Yang D, Ma P, Hou Z, Cheng Z, Li C, Lin J (2015) Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem Soc Rev 44:1416–1448

    Article  CAS  Google Scholar 

  31. Mayer K, Hafner J (2011) Localized surface plasmon resonance sensors. Chem Rev 111(6):3828–3857

    Article  CAS  Google Scholar 

  32. Li Z, Zhang Y (2008) An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF(4): Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology 19(34):345606

    Article  Google Scholar 

  33. Wu SJ, Duan N, Shi Z, Fang CC, Wang ZP (2014) Simultaneous Aptasensor for Multiplex Pathogenic Bacteria Detection Based on Multicolor Upconversion Nanoparticles Labels. Anal Chem 86(6):3100–3107

    Article  CAS  Google Scholar 

  34. Guo H, Ruan F, Lu L, Hu J, Pan J, Yang Z, Ren B (2009) Correlating the Shape, Surface Plasmon Resonance, and Surface-Enhanced Raman Scattering of Gold Nanorods. J Phys Chem C 113(24):10459–10464

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National S&T Support Program of China (2015BAD17B02), National Natural Science Foundation of China (21375049, 31401576), JUSRP51309A and Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouping Wang.

Ethics declarations

The author(s) declare that they have no competing interests

Electronic supplementary material

ESM 1

(DOCX 107766 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, S., Wu, S., Duan, N. et al. A luminescence resonance energy transfer based aptasensor for the mycotoxin Ochratoxin A using upconversion nanoparticles and gold nanorods. Microchim Acta 183, 1909–1916 (2016). https://doi.org/10.1007/s00604-016-1820-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1820-9

Keywords

Navigation