Skip to main content
Log in

Magnetically controlled colorimetric aptasensor for chlorpyrifos based on copper-based metal-organic framework nanoparticles with peroxidase mimetic property

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The fabrication of a magnetically controlled colorimetric aptasensor for chlorpyrifos is reported. The aptasensor was fabricated by the attachment of the colorimetric labels onto the magnetic carrier due to the hybridization reaction between the complementary DNA and aptamer. Chlorpyrifos detection was realized by monitoring the color changes of the TMB/H2O2 solution before and after incubation of the aptasensor with chlorpyrifos via exposure to external magnetic force. The color change was monitored at 650 nm by UV-Vis spectrophotometer. Under the optimal conditions, this magnetically controlled Cu-MOF-based aptasensor showed a detection limit of 4.4 ng/mL with a linear range of 0–1250 ng/mL. The colorimetric aptasensor displayed high selectivity for chlorpyrifos toward other interfering pesticides. The aptasensor was successfully applied for the spiked test of chlorpyrifos in fruits and vegetable samples with good recovery, which were in agreement with data obtained by GC-MS analysis. This magnetically controlled Cu-MOF-based sensing strategy not only leads to development of efficient and facile phase separation, but also expands the MOF’s target scope from H2O2 or glucose to pesticides.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Uzun FG, Demir F, Kalender S, Bas H, Kalender Y (2010) Protective effect of catechin and quercetin on chlorpyrifos-induced lung toxicity in male rats. Food Chem Toxicol 48(6):1714–1720. https://doi.org/10.1016/j.fct.2010.03.051

    Article  CAS  PubMed  Google Scholar 

  2. Khokhar JY, Tyndale RF (2014) Intracerebroventricularly and systemically delivered inhibitor of brain CYP2B (C8-Xanthate), even following chlorpyrifos exposure, reduces chlorpyrifos activation and toxicity in male rats. Toxicol Sci 140(1):49–60. https://doi.org/10.1093/toxsci/kfu075

    Article  CAS  PubMed  Google Scholar 

  3. Khokhar JY, Tyndale RF (2012) Rat brain CYP2B-enzymatic activation of chlorpyrifos to the oxon mediates cholinergic neurotoxicity. Toxicol Sci 126(2):325–335. https://doi.org/10.1093/toxsci/kfs029

    Article  CAS  PubMed  Google Scholar 

  4. McClelland SJ, Bendis RJ, Relyea RA, Woodley SK (2018) Insecticide-induced changes in amphibian brains: how sublethal concentrations of chlorpyrifos directly affect neurodevelopment. Environ Toxicol Chem 37(10):2692–2698. https://doi.org/10.1002/etc.4240

    Article  CAS  PubMed  Google Scholar 

  5. Liu YH, Chen J, Guo YR, Wang CM, Liang X, Zhu GN (2011) A sensitive monoclonal antibody-based enzyme-linked immunosorbent assay for chlorpyrifos residue determination in Chinese agricultural samples. J Environ Sci Health B 46(4):313–320. https://doi.org/10.1080/03601234.2011.559884

    Article  CAS  PubMed  Google Scholar 

  6. Fetisov EO, Shah MS, Long JR, Tsapatsis M, Siepmann JI (2018) First principles Monte Carlo simulations of unary and binary adsorption: CO2, N2, and H2O in Mg-MOF-74. Chem Commun (Camb) 54(77):10816–10819. https://doi.org/10.1039/c8cc06178e

    Article  CAS  Google Scholar 

  7. Cao CS, Shi Y, Xu H, Zhao B (2018) A multifunctional MOF as a recyclable catalyst for the fixation of CO2 with aziridines or epoxides and as a luminescent probe of Cr (vi). Dalton Trans 47(13):4545–4553. https://doi.org/10.1039/c8dt00254a

    Article  CAS  PubMed  Google Scholar 

  8. Hu GB, Xiong CY, Liang WB, Zeng XS, Xu HL, Yang Y, Yao LY, Yuan R, Xiao DR (2018) Highly stable mesoporous luminescence-functionalized MOF with excellent electrochemiluminescence property for ultrasensitive immunosensor construction. ACS Appl Mater Interfaces 10(18):15913–15919. https://doi.org/10.1021/acsami.8b05038

    Article  CAS  PubMed  Google Scholar 

  9. Shao K, Wang B, Nie A, Ye S, Ma J, Li Z, Lv Z, Han H (2018) Target-triggered signal-on ratiometric electrochemiluminescence sensing of PSA based on MOF/Au/G-quadruplex. Biosens Bioelectron 118:160–166. https://doi.org/10.1016/j.bios.2018.07.029

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Zhu Y, Binyam A, Liu M, Wu Y, Li F (2016) Discovering the enzyme mimetic activity of metal-organic framework (MOF) for label-free and colorimetric sensing of biomolecules. Biosens Bioelectron 86:432–438. https://doi.org/10.1016/j.bios.2016.06.036

    Article  CAS  PubMed  Google Scholar 

  11. Qi Z, Wang L, You Q, Chen Y (2017) PA-Tb-Cu MOF as luminescent nanoenzyme for catalytic assay of hydrogen peroxide. Biosens Bioelectron 96:227–232. https://doi.org/10.1016/j.bios.2017.05.013

    Article  CAS  PubMed  Google Scholar 

  12. Zheng HQ, Liu CY, Zeng XY, Chen J, Lu J, Lin RG, Cao R, Lin ZJ, Su JW (2018) MOF-808: a metal-organic framework with intrinsic peroxidase-like catalytic activity at neutral pH for colorimetric biosensing. Inorg Chem 57(15):9096–9104. https://doi.org/10.1021/acs.inorgchem.8b01097

    Article  CAS  PubMed  Google Scholar 

  13. Tan B, Zhao H, Wu W, Liu X, Zhang Y, Quan X (2017) Fe3O4-AuNPs anchored 2D metal-organic framework nanosheets with DNA regulated switchable peroxidase-like activity. Nanoscale 9(47):18699–18710. https://doi.org/10.1039/c7nr05541b

    Article  CAS  PubMed  Google Scholar 

  14. Shahrokhian S, Ranjbar S (2018) Aptamer immobilization on amino-functionalized metal-organic frameworks: an ultrasensitive platform for the electrochemical diagnostic of Escherichia coli O157:H7. Analyst 143(13):3191–3201. https://doi.org/10.1039/c8an00725j

    Article  CAS  PubMed  Google Scholar 

  15. Wang RH, Zhu CL, Wang LL, Xu LZ, Wang WL, Yang C, Zhang Y (2019) Dual-modal aptasensor for the detection of isocarbophos in vegetables. Talanta 205:120094. https://doi.org/10.1016/j.talanta.2019.06.094

    Article  CAS  PubMed  Google Scholar 

  16. Feng J, Shen Q, Wu J, Dai Z, Wang Y (2019) Naked-eyes detection of Shigella flexneri in food samples based on a novel gold nanoparticle-based colorimetric aptasensor. Food Control 98:333–341. https://doi.org/10.1016/j.foodcont.2018.11.048

    Article  CAS  Google Scholar 

  17. Xu W, Zhao A, Zuo F, Jafar Hussain HM, Khan R (2019) A “turn-off” SERS aptasensor based DNAzyme-gold nanorod for ultrasensitive lead ion detection. Analytica Chimica Acta X 2:100020. https://doi.org/10.1016/j.acax.2019.100020

    Article  Google Scholar 

  18. Zhang ZH, Duan FH, Tian JY, He JY, Yang LY, Zhao H, Zhang S, Liu CS, He LH, Chen M, Chen DM, Du M (2017) Aptamer-embedded zirconium-based metal-organic framework composites prepared by de novo bio-inspired approach with enhanced biosensing for detecting trace analytes. ACS Sens 2(7):982–989. https://doi.org/10.1021/acssensors.7b00236

    Article  CAS  PubMed  Google Scholar 

  19. Chui SS, Lo SM, Charmant JP, Orpen AG, Williams ID (1999) A chemically functionalizable nanoporous material. Science 283(5405):1148–1150. https://doi.org/10.1126/science.283.5405.1148

    Article  CAS  PubMed  Google Scholar 

  20. Asfaram A, Ghaedi M, Dashtian K (2017) Rapid ultrasound-assisted magnetic microextraction of gallic acid from urine, plasma and water samples by HKUST-1-MOF-Fe3O4-GA-MIP-NPs: UV-vis detection and optimization study. Ultrason Sonochem 34:561–570. https://doi.org/10.1016/j.ultsonch.2016.06.033

    Article  CAS  PubMed  Google Scholar 

  21. Lin KA, Hsieh Y (2015) Copper-based metal organic framework (MOF), HKUST-1, as an efficient adsorbent to remove p-nitrophenol from water. J Taiwan Inst Chem Eng 50:223–228. https://doi.org/10.1016/j.jtice.2014.12.008

    Article  CAS  Google Scholar 

  22. Shahrokhian S, Ranjbar S (2018) Aptamer immobilization on amino-functionalized metal–organic frameworks: an ultrasensitive platform for the electrochemical diagnostic of Escherichia coli O157:H7. Analyst 143(13):3191–3201. https://doi.org/10.1039/c8an00725j

    Article  CAS  PubMed  Google Scholar 

  23. Zhang F, Huang Q, Yan J, Chen Z (2016) Histone acetylation induced transformation of B-DNA to Z-DNA in cells probed through FT-IR spectroscopy. Anal Chem 88(8):4179–4182. https://doi.org/10.1021/acs.analchem.6b00400

    Article  CAS  PubMed  Google Scholar 

  24. Chen Y, Ren HL, Liu N, Sai N, Liu X, Liu Z, Gao Z, Ning B (2010) A fluoroimmunoassay based on quantum dot-streptavidin conjugate for the detection of chlorpyrifos. J Agric Food Chem 58(16):8895–8903. https://doi.org/10.1021/jf101778t

    Article  CAS  PubMed  Google Scholar 

  25. Sun X, Cao Y, Gong Z, Wang X, Zhang Y, Gao J (2012) An amperometric immunosensor based on multi-walled carbon nanotubes-thionine-chitosan nanocomposite film for chlorpyrifos detection. Sensors (Basel) 12(12):17247–17261. https://doi.org/10.3390/s121217247

    Article  CAS  Google Scholar 

  26. Xu G, Huo D, Hou C, Zhao Y, Bao J, Yang M, Fa H (2018) A regenerative and selective electrochemical aptasensor based on copper oxide nanoflowers-single walled carbon nanotubes nanocomposite for chlorpyrifos detection. Talanta 178:1046–1052. https://doi.org/10.1016/j.talanta.2017.08.086

    Article  CAS  PubMed  Google Scholar 

  27. Roushani M, Nezhadali A, Jalilian Z (2018) An electrochemical chlorpyrifos aptasensor based on the use of a glassy carbon electrode modified with an electropolymerized aptamer-imprinted polymer and gold nanorods. Mikrochim Acta 185(12):551. https://doi.org/10.1007/s00604-018-3083-0

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was sponsored by National Key Research and Development Program of China (2016YFD0400902), China Postdoctoral Science Foundation (2019M650556), Beijing Postdoctoral Research Foundation (2018-ZZ-059), and Postdoctoral Research Foundation of Beijing Academy of Agriculture and Forestry (2018-ZZ-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Han.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2836 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., He, Z., Wang, H. et al. Magnetically controlled colorimetric aptasensor for chlorpyrifos based on copper-based metal-organic framework nanoparticles with peroxidase mimetic property. Microchim Acta 187, 524 (2020). https://doi.org/10.1007/s00604-020-04499-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04499-x

Keywords

Navigation