Skip to main content
Log in

A two-wavelength fluorescence recovery method for the simultaneous determination of aureomycin and oxytetracycline by using gold nanocrystals modified with serine and 11-mercaptoundecanoic acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A method is described for rapid (1 h) synthesis of gold nanoclusters (AuNCs) co-functionalized with serine and 11-mercaptoundecanoic acid. The co-functionalized AuNCs exhibit good stability towards temperature, pH values, and over time. They were characterized by atomic force microscopy, high-resolution transmission electron microscopy, dynamic light scattering, and by fluorescence, IR and X-ray photoelectron spectroscopies. The fluorescence of the AuNCs is quenched by Hg(II) and restored on subsequent addition of aureomycin (CTC) or oxytetracycline (OTC). A fluorescent turn-on assay was worked out for simultaneous detection of CTC and OTC based on recording the change of the restored fluorescence measured at 420 and 500 nm under 340 nm photoexcitation. The detection limits are 20 and 9 nM for CTC and OTC, respectively. The concentrations of CTC and OTC can also be visualized by UV illumination. The nanoprobe was successfully applied to the simultaneous determination of CTC and OTC in spiked human urine.

Schematic of a two-wavelength fluorescence recovery method for the simultaneous determination of aureomycin and oxytetracycline. It is based on the use of gold nanocrystals modified with serine and 11-mercaptoundecanoic acid, and on recording the change of the restored fluorescence measured at 420 and 500 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hou H, Bai XJ, Xing CY, Gu NY, Zhang BL, Tang JL (2013) Aptamer-based cantilever array sensors for oxytetracycline detection. Anal Chem 85:2010–2014

    Article  CAS  Google Scholar 

  2. Lai C, Liu X, Qin L, Zhang C, Zeng G, Huang D, Cheng M, Xu P, Yi H, Huang D (2017) Chitosan-wrapped gold nanoparticles for hydrogen-bonding recognition and colorimetric determination of the antibiotic kanamycin. Microchim Acta 184:2097–2105

    Article  CAS  Google Scholar 

  3. Qin L, Zeng G, Lai C, Huang D, Zhang C, Xu P, Hu T, Liu X, Cheng M, Liu Y (2017) A visual application of gold nanoparticles: simple, reliable and sensitive detection of kanamycin based on hydrogen-bonding recognition. Sensors Actuators B Chem 243:946–954

    Article  CAS  Google Scholar 

  4. Yan ZD, Gan N, Li TH, Cao YT, Chen YJ (2016) A sensitive electrochemical aptasensor for multiplex antibiotics detection based on high-capacity magnetic hollow porous nanotracers coupling exonuclease-assisted cascade target recycling. Biosens Bioelectron 78:51–57

    Article  CAS  Google Scholar 

  5. Liu CB, Lu CX, Tang ZG, Chen X, Wang GH, Sun FX (2015) Aptamer-functionalized magnetic nanoparticles for simultaneous fluorometric determination of oxytetracycline and kanamycin. Microchim Acta 182:2567–2575

    Article  CAS  Google Scholar 

  6. Wang Y, Gan N, Zhou Y, Li TH, Hu FT, Cao YT, Chen YJ (2017) Novel label-free and high-throughput microchip electrophoresis platform for multiplex antibiotic residues detection based on aptamer probes and target catalyzed hairpin assembly for signal amplification. Biosens Bioelectron 97:100–106

    Article  CAS  Google Scholar 

  7. Li J, Jiang F, Wei X (2010) Molecularly imprinted sensor based on an enzyme amplifier for ultratrace oxytetracycline determination. Anal Chem 82:6074–6078

    Article  CAS  Google Scholar 

  8. Li N, Chang CY, Pan W, Tang B (2012) A multicolor Nanoprobe for detection and imaging of tumor-RelatedmRNAs in living cells. Angew Chem Int Ed 51:7426–7430

    Article  CAS  Google Scholar 

  9. Pan W, Zhang TT, Yang HJ, Diao W, Li N, Tang B (2013) Multiplexed detection and imaging of intracellular mRNAs using a four-color Nanoprobe. Anal Chem 85:10581–10588

    Article  CAS  Google Scholar 

  10. Yang LM, Chen YY, Pan W, Wang HY, Li N, Tang B (2017) Visualizing the conversion process of alcohol-induced fatty liver to steatohepatitis in vivo with a fluorescent Nanoprobe. Anal Chem 89:6196–6201

    Article  CAS  Google Scholar 

  11. Yang LM, Ren YF, Pan W, Yu ZZ, Tong LL, Li N, Tang B (2016) Fluorescent nanocomposite for visualizing cross-talk between MicroRNA-21 and hydrogen peroxide in ischemia-reperfusion injury in live cells and in vivo. Anal Chem 88:11886–11891

    Article  CAS  Google Scholar 

  12. Chen LY, Wang CW, Yuan Z, Chang HT (2015) Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem 87:216–229

    Article  CAS  Google Scholar 

  13. Xu SH, Gao T, Feng XY, Mao YN, Liu PP, Yu XJ, Luo XL (2016) Dual ligand co-functionalized fluorescent gold nanoclusters for the “turn on” sensing of glutathione in tumor cells. J Mater Chem B 4:1270–1275

    Article  CAS  Google Scholar 

  14. Xu SH, Feng XY, Gao T, Liu GF, Mao YN, Lin JH, Yu XJ, Luo XL (2017) Aptamer induced multicoloured AuNCs-MoS2 “switch on” fluorescence resonance energy transfer biosensor for dual color simultaneous detection of multiple tumor markers by single wavelength excitation. Anal Chim Acta 983:173–180

    Article  CAS  Google Scholar 

  15. Yan X, Li HX, Cao BC, Ding ZY, Su XG (2015) A highly sensitive dual-readout assay based on gold nanoclusters for folic acid detection. Microchim Acta 182:1281–1288

    Article  CAS  Google Scholar 

  16. Bian PP, Zhou J, Liu YY, Ma ZF (2013) One-step fabrication of intense red fluorescent gold nanoclusters and their application in cancer cell imaging. Nano 5:6161–6166

    CAS  Google Scholar 

  17. Sun J, Yang F, Zhao D, Yang XR (2014) Highly sensitive real-time assay of inorganic pyrophosphatase activity based on the fluorescent gold nanoclusters. Anal Chem 86:7883–7889

    Article  CAS  Google Scholar 

  18. Xu SH, Li XL, Mao YN, Gao T, Feng XY, Luo XL (2016) Novel dual ligand co-functionalized fluorescent gold nanoclusters as a versatile probe for sensitive analysis of Hg2+ and oxytetracycline. Anal Bioanal Chem 408:2955–2962

    Article  CAS  Google Scholar 

  19. Santosh A, Remant BKC, Dharmaraj N, Bhattarai N, Kim CH, Kim HY (2006) Spectroscopic identification of S-au interaction in cysteine capped gold nanoparticles, Spectrochim. Acta Part A 63:160–163

    Article  Google Scholar 

  20. Wang Y, Chen JT, Yan XP (2013) Fabrication of transferrin functionalized gold nanoclusters/graphene oxide nanocomposite for turn-on near-infrared fluorescent bioimaging of Cancer cells and small animals. Anal Chem 85:2529–2535

    Article  CAS  Google Scholar 

  21. Shang L, Dörlich RM, Brandholt S, Schneider R, Trouillet V, Bruns M, Gerthsen D, Nienhaus GU (2011) Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nano 3:2009–2014

    CAS  Google Scholar 

  22. Whetten RL, Price RC (2007) Nano-Golden Order. Science 318:407–408

    Article  CAS  Google Scholar 

  23. Yu Y, Luo ZT, Chevrier DM, Leong DT, Zhang P, Jiang DE, Xie JP (2014) Identification of a highly luminescent Au22(SG)18 nanocluster. J Am Chem Soc 136:1246–1249

    Article  CAS  Google Scholar 

  24. Wu ZK, Jin RC (2010) On the ligand's role in the fluorescence of gold nanoclusters. Nano Lett 10:2568–2573

    Article  CAS  Google Scholar 

  25. Zhou C, Sun C, Yu M, Qin Y, Wang J, Kim M, Zheng J (2010) Luminescent gold nanoparticles with mixed valence states generated from dissociation of polymeric au (I) thiolates. J Phys Chem C 114:7727–7732

    Article  CAS  Google Scholar 

  26. Xu SH, Feng XY, Gao T, Wang RZ, Mao YN, Lin JH, Yu XJ, Luo XL (2017) A novel dual-functional biosensor for fluorometric detection of inorganic pyrophosphate and pyrophosphatase activity based on globulin stabilized gold nanoclusters. Anal Chim Acta 958:22–29

    Article  CAS  Google Scholar 

  27. Pyo K, Thanthirige VD, Kwak K, Pandurangan P, Ramakrishna G, Lee D (2015) Ultrabright luminescence from gold nanoclusters: rigidifying the au(I)-thiolate Shell. J Am Chem Soc 137:8244–8250

    Article  CAS  Google Scholar 

  28. Huang CC, Chang HT (2007) Parameters for selective colorimetric sensing of mercury (II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles. Chem Commun (12):1215–1217

  29. Huang CC, Yang Z, Lee KH, Chang HT (2007) Synthesis of highly fluorescent gold nanoparticles for sensing mercury (II). Angew Chem Int Ed 46:6824–6828

    Article  CAS  Google Scholar 

  30. Chen W, Tu X, Guo X (2009) Fluorescent gold nanoparticles-based fluorescence sensor for Cu2+ ions. Chem Commun (13):1736–1738

  31. Zheng J, Zhang C, Dickson RM (2004) Highly fluorescent, watersoluble, size-tunable gold quantum dots. Phys Rev Lett 93:0774021–0774024

    Google Scholar 

  32. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions:forces contributing to stability. Biochemistry 20:3096–3102

    Article  CAS  Google Scholar 

  33. Kawasaki H, Hamaguchi K, Osaka I, Arakawa R (2011) Ph-dependent synthesis of pepsin-mediated gold nanoclusters with blue green and red fluorescent emission. Adv Funct Mater 21:3508–3515

    Article  CAS  Google Scholar 

  34. Cheng ZQ, Wang ZY, Gillespie DE, Lausted C, Zheng Z, Yang M, Zhu JS (2015) Plain silver surface Plasmon resonance for microarray application. Anal Chem 87:1466–1469

    Article  CAS  Google Scholar 

  35. Gaudin V (2017) Advances in biosensor development for the screening of antibiotic residues in food products of animal origin-A comprehensive review. 90: 363–377

Download references

Acknowledgements

S. Xu, Y. Mao, Y. Nie and J. Wang are grateful for the financialsupport provided by NSFC (21505081) and the Doctoral Found of QUST (010022832). X. Luo acknowledges the financial support by NSFC (21422504 and 21675093), the Natural Science Foundation of Shandong Province of China (JQ201406) and the Taishan Scholar Program of Shandong Province, China(ts20110829).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shenghao Xu or Xiliang Luo.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 1326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Y., Wu, Y., Nie, Y. et al. A two-wavelength fluorescence recovery method for the simultaneous determination of aureomycin and oxytetracycline by using gold nanocrystals modified with serine and 11-mercaptoundecanoic acid. Microchim Acta 185, 222 (2018). https://doi.org/10.1007/s00604-018-2762-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2762-1

Keywords

Navigation