Skip to main content
Log in

Chitosan-wrapped gold nanoparticles for hydrogen-bonding recognition and colorimetric determination of the antibiotic kanamycin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a colorimetric assay for the quantitation of antibiotic kanamycin. It is based on hydrogen-bonding recognition capability of gold nanoparticles (AuNPs) in a chitosan matrix. Hydrogen-bonding interaction between kanamycin and chitosan induces the aggregation of the AuNPs, and this result in a color change of the AuNPs from wine red to blue. The ratio of the absorbance at 650 nm and 520 nm increases linearly over the 0.01 to 40 μM kanamycin concentration range, and the detection limit is 8 nM (at an S/N ratio of 3). This low detection limit easily matches the maximum residue limits established by the European Union for milk (288 nM). Selectivity experiments revealed the assay to have a satisfactory specificity. It was applied to the determination of trace levels of kanamycin in (spiked) real samples. Results agreed well with those obtained by HPLC. The method does not require tedious detection procedure or sophisticated instrumentation.

Schematic of a colorimetric method for sensitive determination of kanamycin. It is based on chitosan-wrapped gold nanoparticles (chitosan-AuNPs) for hydrogen-bonding recognition. The method has a detection limit as low as 8 nM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang C, Lai C, Zeng GM, Huang DL, Yang CP, Wang Y, Zhou YY, Cheng M (2016) Efficacy of carbonaceous nanocomposites for sorbing ionizable antibiotic sulfamethazine from aqueous solution. Water Res 95:103–112. doi:10.1016/j.watres.2016.03.014

    Article  CAS  Google Scholar 

  2. Li R, Liu Y, Cheng L, Yang C, Zhang J (2014) Photoelectrochemical aptasensing of kanamycin using visible light-activated carbon nitride and graphene oxide nanocomposites. Anal Chem 86(19):9372–9375. doi:10.1021/ac502616n

    Article  CAS  Google Scholar 

  3. Wang C, Liu C, Luo J, Tian Y, Zhou N (2016) Direct electrochemical detection of kanamycin based on peroxidase-like activity of gold nanoparticles. Anal Chim Acta 936:75–82. doi:10.1016/j.aca.2016.07.013

    Article  CAS  Google Scholar 

  4. Zhu Y, Chandra P, Song KM, Ban C, Shim YB (2012) Label-free detection of kanamycin based on the aptamer-functionalized conducting polymer/gold nanocomposite. Biosens Bioelectron 36(1):29–34. doi:10.1016/j.bios.2012.03.034

    Article  CAS  Google Scholar 

  5. Watanabe H, Satake A, Kido Y, Tsuji A (1999) Production of monoclonal antibody and development of enzyme-linked immunosorbent assay for kanamycin in biological matrices. Analyst 124(11):1611–1615

    Article  CAS  Google Scholar 

  6. Loomans EE, van Wiltenburg J, Koets M, van Amerongen A (2003) Neamin as an immunogen for the development of a generic ELISA detecting gentamicin, kanamycin, and neomycin in milk. J Agric Food Chem 51(3):587–593

    Article  CAS  Google Scholar 

  7. Yan JL (2008) Determinationation of kanamycin by square-wave cathodic adsorptive stripping voltammetry. Russ J Electrochem 44(12):1334–1338

    Article  CAS  Google Scholar 

  8. Althaus R, Berruga MI, Montero A, Roca M, Molina MP (2009) Evaluation of a microbiological multi-residue system on the detection of antibacterial substances in ewe milk. Anal Chim Acta 632(1):156–162

    Article  CAS  Google Scholar 

  9. Chen SH, Liang YC, Chou YW (2006) Analysis of kanamycin a in human plasma and in oral dosage form by derivatization with 1-naphthyl isothiocyanate and high-performance liquid chromatography. J Sep Sci 29(5):607–612

    Article  CAS  Google Scholar 

  10. Megoulas N, Koupparis M (2005) Direct determination of kanamycin in raw materials, veterinary formulation and culture media using a novel liquid chromatography-evaporative light scattering method. Anal Chim Acta 547(1):64–72

    Article  CAS  Google Scholar 

  11. Yu S, Wei Q, Du B, Wu D, Li H, Yan L, Ma H, Zhang Y (2013) Label-free immunosensor for the detection of kanamycin using ag@Fe(3)O(4) nanoparticles and thionine mixed graphene sheet. Biosens Bioelectron 48:224–229. doi:10.1016/j.bios.2013.04.025

    Article  CAS  Google Scholar 

  12. Wang X, Zou M, Xu X, Lei R, Li K, Li N (2009) Determination of human urinary kanamycin in one step using urea-enhanced surface plasmon resonance light-scattering of gold nanoparticles. Anal Bioanal Chem 395(7):2397–2403. doi:10.1007/s00216-009-3134-9

    Article  CAS  Google Scholar 

  13. Zhang C, Lai C, Zeng GM, Huang DL, Tang L, Yang CP, Zhou YY, Qin L, Cheng M (2016) Nanoporous au-based chronocoulometric aptasensor for amplified detection of Pb(2+) using DNAzyme modified with au nanoparticles. Biosens Bioelectron 81:61–67. doi:10.1016/j.bios.2016.02.053

    Article  CAS  Google Scholar 

  14. Zhang C, Liu L, Zeng GM, Huang DL, Lai C, Huang C, Wei Z, Li NJ, Xu P, Cheng M, Li FL, He XX, Lai MY, He YB (2014) Utilization of nano-gold tracing technique: study the adsorption and transmission of laccase in mediator-involved enzymatic degradation of lignin during solid-state fermentation. Biochem Eng J 91:149–156. doi:10.1016/j.bej.2014.08.009

    Article  CAS  Google Scholar 

  15. Zhang X, Zhao H, Xue Y, Wu Z, Zhang Y, He Y, Li X, Yuan Z (2012) Colorimetric sensing of clenbuterol using gold nanoparticles in the presence of melamine. Biosens Bioelectron 34(1):112–117. doi:10.1016/j.bios.2012.01.026

    Article  CAS  Google Scholar 

  16. Feng JJ, Guo H, Li YF, Wang YH, Chen WY, Wang AJ (2013) Single molecular functionalized gold nanoparticles for hydrogen-bonding recognition and colorimetric detection of dopamine with high sensitivity and selectivity. ACS Appl Mater Interfaces 5(4):1226–1231. doi:10.1021/am400402c

    Article  CAS  Google Scholar 

  17. Lai C, Qin L, Zeng GM, Liu Y, Huang DL, Zhang C, Xu P, Cheng M, Qin XB, Wang MM (2016) Sensitive and selective detection of mercury ions based on papain and 2,6-pyridinedicarboxylic acid functionalized gold nanoparticles. RSC Adv 6(4):3259–3266. doi:10.1039/c5ra23157d

    Article  CAS  Google Scholar 

  18. Wei H, Li B, Li J, Wang E, Dong S (2007) Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem Commun 36:3735–3737

    Article  Google Scholar 

  19. Li F, Zhang J, Cao X, Wang L, Li D, Song S, Ye B, Fan C (2009) Adenosine detection by using gold nanoparticles and designed aptamer sequences. Analyst 134(7):1355–1360

    Article  CAS  Google Scholar 

  20. Zhang X, Zhang Y, Zhao H, He Y, Li X, Yuan Z (2013) Highly sensitive and selective colorimetric sensing of antibiotics in milk. Anal Chim Acta 778:63–69. doi:10.1016/j.aca.2013.03.059

    Article  CAS  Google Scholar 

  21. Song KM, Cho M, Jo H, Min K, Jeon SH, Kim T, Han MS, Ku JK, Ban C (2011) Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Anal Biochem 415(2):175–181. doi:10.1016/j.ab.2011.04.007

    Article  CAS  Google Scholar 

  22. Leung KH, He HZ, Chan DSH, Fu WC, Leung CH, Ma DL (2013) An oligonucleotide-based switch-on luminescent probe for the detection of kanamycin in aqueous solution. Sensors Actuators B Chem 177:487–492. doi:10.1016/j.snb.2012.11.053

    Article  CAS  Google Scholar 

  23. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Defining the hydrogen bond: an account (IUPAC technical report). Pure Appl Chem 83(8). doi:10.1351/pac-rep-10-01-01

  24. Cao Q, Zhao H, He Y, Li X, Zeng L, Ding N, Wang J, Yang J, Wang G (2010) Hydrogen-bonding induced colorimetric detection of melamine by nonaggregation-based AuNPs as a probe. Biosens Bioelectron 25(12):2680–2685

    Article  CAS  Google Scholar 

  25. Ai K, Liu Y, Lu L (2009) Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. J Am Chem Soc 131(27):9496–9497

    Article  CAS  Google Scholar 

  26. Qin L, Zeng GM, Lai C, Huang DL, Zhang C, Xu P, Hu TJ, Liu XG, Cheng M, Liu Y, Hu L, Zhou YY (2017) A visual application of gold nanoparticles: simple, reliable and sensitive detection of kanamycin based on hydrogen-bonding recognition. Sensors Actuators B Chem 243:946–954. doi:10.1016/j.snb.2016.12.086

    Article  CAS  Google Scholar 

  27. Chen Z, Zhang C, Tan Y, Zhou T, Ma H, Wan C, Lin Y, Li K (2014) Chitosan-functionalized gold nanoparticles for colorimetric detection of mercury ions based on chelation-induced aggregation. Microchim Acta 182(3–4):611–616. doi:10.1007/s00604-014-1365-8

    Google Scholar 

  28. Manna U, Bharani S, Patil S (2009) Layer-by-layer self-assembly of modified hyaluronic acid/chitosan based on hydrogen bonding. Biomacromolecules 10(9):2632–2639

    Article  CAS  Google Scholar 

  29. Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125(46):13940–13941

    Article  CAS  Google Scholar 

  30. Lai C, Zeng GM, Huang DL, Zhao MH, Wei Z, Huang C, Xu P, Li NJ, Zhang C, Chen M (2014) Synthesis of gold–cellobiose nanocomposites for colorimetric measurement of cellobiase activity. Spectrochim Acta A Mol Biomol Spectrosc 132:369–374

    Article  CAS  Google Scholar 

  31. Kalita M, Balivada S, Swarup VP, Mencio C, Raman K, Desai UR, Troyer D, Kuberan B (2014) A nanosensor for ultrasensitive detection of oversulfated chondroitin sulfate contaminant in heparin. J Am Chem Soc 136(2):554–557

    Article  CAS  Google Scholar 

  32. Chen J, Li Z, Ge J, Yang R, Zhang L, Qu LB, Wang HQ, Zhang L (2015) An aptamer-based signal-on bio-assay for sensitive and selective detection of kanamycin a by using gold nanoparticles. Talanta 139:226–232. doi:10.1016/j.talanta.2015.02.036

    Article  CAS  Google Scholar 

  33. Chi H, Liu B, Guan G, Zhang Z, Han MY (2010) A simple, reliable and sensitive colorimetric visualization of melamine in milk by unmodified gold nanoparticles. Analyst 135(5):1070–1075

    Article  CAS  Google Scholar 

  34. Chen Z, Wang Z, Chen X, Xu H, Liu J (2013) Chitosan-capped gold nanoparticles for selective and colorimetric sensing of heparin. Journal of Nanoparticle Research : an Interdisciplinary Forum for Nanoscale Science and Technology 15:1930. doi:10.1007/s11051-013-1930-9

    Article  Google Scholar 

  35. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632

    Article  CAS  Google Scholar 

  36. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro-and nanoparticles in drug delivery. Journal of Controlled Release : Official Journal of the Controlled Release Society 100(1):5–28. doi:10.1016/j.jconrel.2004.08.010

    Article  CAS  Google Scholar 

  37. Liao QG, Wei BH, Luo LG (2016) Aptamer based fluorometric determination of kanamycin using double-stranded DNA and carbon nanotubes. Microchim Acta 184(2):627–632. doi:10.1007/s00604-016-2050-x

    Article  Google Scholar 

  38. Wang Y, Ma T, Ma S, Liu Y, Tian Y, Wang R, Jiang Y, Hou D, Wang J (2016) Fluorometric determination of the antibiotic kanamycin by aptamer-induced FRET quenching and recovery between MoS2 nanosheets and carbon dots. Microchim Acta 184(1):203–210. doi:10.1007/s00604-016-2011-4

    Article  Google Scholar 

  39. De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJAM, Geertsma RE (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29(12):1912–1919. doi:10.1016/j.biomaterials.2007.12.037

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Program for the National Natural Science Foundation of China (51408206, 51378190, 51278176, 51579098, 51521006, 21507034), the National Program for Support of Top-Notch Young Professionals of China (2014), the Program for New Century Excellent Talents in University (NCET-13-0186), the Program for Changjiang Scholars and Innovative Research Team in University (IRT-13R17), Scientific Research Fund of Hunan Provincial Education Department (No.521293050), the Natural Science Foundation of Guangdong Province, China (2016A030310022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cui Lai or Guangming Zeng.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 489 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, C., Liu, X., Qin, L. et al. Chitosan-wrapped gold nanoparticles for hydrogen-bonding recognition and colorimetric determination of the antibiotic kanamycin. Microchim Acta 184, 2097–2105 (2017). https://doi.org/10.1007/s00604-017-2218-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2218-z

Keywords

Navigation