Skip to main content
Log in

Highly crystalline graphitic carbon nitride quantum dots as a fluorescent probe for detection of Fe(III) via an innner filter effect

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Bulk g-C3N4 was transformed into water-soluble graphitic carbon nitride quantum dots (g-CNQDs) via a chemical oxidation and liquid exfoliation process. The g-CNQDs possess a size distribution ranging from 1 to 5 nm (centered at 3 nm), excellent crystallinity, and are water soluble. It is found that Fe(III) ions are adsorbed on the surface of the g-CNQDs via electrostatic interaction, and that the blue fluorescence of the g-CNQDs is reduced by Fe(III) via an inner filter effect. By using the g-CNQDs as a fluorescent probe, Fe(III) can be determined at excitation/emission wavelengths of 241/368 nm in spiked natural water samples within 1 min and with good selectivity over other ions. Response is linear in the 0.2–60 μmol·L−1 Fe(III) concentration range, and the detection limit is 23 nmol·L−1.

Graphitic carbon nitride quantum dots (g-CNQDs) emit blue fluorescence at an excitation wavelength of 241 nm. Fe(III) ions are quickly adsorbed on the g-CNQDs via electrostatic interaction, and fluorescence is quenched due to an inner filter effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu FJ, Huang BQ, Li SX, Zheng FY, Huang XG (2016) Effect of nitrate enrichment and diatoms on the bioavailability of Fe (III) oxyhydroxide colloids in seawater. Chemosphere 147:105–113

    Article  CAS  Google Scholar 

  2. Zuo YG (1995) Kinetics of photochemical/chemical cycling of iron coupled with organic substances in cloud and fog droplets. Geochim Cosmochim Acta 59:3123–3130

    Article  CAS  Google Scholar 

  3. Zuo YG, Hoigne J (1992) Formation of H2O2 and decomposition of oxalate in atmospheric water by sunlight inducing photolysis of Fe(III) oxalate complexes. Environ Sci Technol 26:1014–1022

    Article  CAS  Google Scholar 

  4. Li SX, Lin LX, Zheng FY, Wang QX (2011) Metal bioavailability and risk assessment from edible brown alga Laminaria Japonica, using biomimetic digestion and absorption system and determination by ICP-MS. J Agric Food Chem 59:822–828

    Article  CAS  Google Scholar 

  5. Shang GJ, Huang J, He D, He X, Wang K, Ye R, Tang J (2017) Highly Fe3+-selective fluorescent nanoprobe based on ultrabright N/P codoped carbon dots and its application in biological samples. Anal Chem 89:7477–7484

    Article  Google Scholar 

  6. Zheng M, Tan HQ, Xie ZG, Zhang LG, Jing XB, Sun ZC (2013) Fast response and high sensitivity europium metal organic framework fluorescent probe with chelating terpyridine sites for Fe3+. ACS Appl Mater Interfaces 5:1078–1083

    Article  CAS  Google Scholar 

  7. Song ZP, Lin TR, Lin LH, Lin S, FF F, Wang XC, Guo LQ (2016) Invisible security ink based on water-soluble graphitic carbon nitride quantum dots. Angew Chem Int Ed 55:2773–2777

    Article  CAS  Google Scholar 

  8. YC L, Chen J, Wang AJ, Bao N, Feng JJ, Wang W, Shao L (2015) Facile synthesis of oxygen and sulfur co-doped graphitic carbon nitride fluorescent quantum dots and their application for mercury (II) detection and bioimaging. J Mater Chem C 3:73–78

    Article  Google Scholar 

  9. Chen SB, Hao N, Jiang D, Zhang X, Zhou Z, Zhang Y, Wang K (2017) Graphitic carbon nitride quantum dots in situ coupling to Bi2MoO6 nanohybrids with enhanced charge transfer performance and photoelectrochemical detection of copper ion. J Electroanal Chem 787:66–71

    Article  CAS  Google Scholar 

  10. Achadu OJ, Nyokong T (2017) In situ one-pot synthesis of graphitic carbon nitride quantum dots and its 2, 2, 6, 6-tetramethyl (piperidin-1-yl) oxyl derivatives as fluorescent nanoprobes for ascorbic acid. Anal Chim Acta 991:113–126

    Article  CAS  Google Scholar 

  11. Barman S, Sadhukhan M (2012) Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive probes for the detection of mercuric and iodide ions in aqueous media. J Mater Chem 22:21832–21837

    Article  CAS  Google Scholar 

  12. Zhou ZX, Shen YF, Li Y, Liu AR, Liu SQ, Zhang YZ (2015) Chemical cleavage of layered carbon nitride with enhanced photoluminescent performances and photoconduction. ACS Nano 9:12480–12487

    Article  CAS  Google Scholar 

  13. Tang YR, YY S, Yang N, Zhang LC, Lv Y (2014) Carbon nitride quantum dots: a novel chemiluminescence system for selective detection of free chlorine in water. Anal Chem 86:4528–4535

    Article  CAS  Google Scholar 

  14. Wang H, Ma Q, Wang YF, Wang CH, Qin DD, Shan DL, Chen J, XQ L (2017) Resonance energy transfer based electrochemiluminescence and fluorescence sensing of riboflavin using graphitic carbon nitride quantum dots. Anal Chim Acta 973:34–42

    Article  CAS  Google Scholar 

  15. Li H, Shao FQ, Huang H, Feng JJ, Wang AJ (2016) Eco-friendly and rapid microwave synthesis of green fluorescent graphitic carbon nitride quantum dots for vitro bioimaging. Sensors Actuators B Chem 226:506–511

    Article  CAS  Google Scholar 

  16. Zhan Y, Liu ZM, Liu QQ, Huang D, Wei Y, YC H, Lian XJ, CF H (2017) A facile and one-pot synthesis of fluorescent graphitic carbon nitride quantum dots for bio-imaging applications. New J Chem 41:3930–3938

    Article  CAS  Google Scholar 

  17. Zu FL, Yan FY, Bai ZJ, Xu JX, Wang YY, Huang YC, Zhou XG (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184:1899–1914

    Article  CAS  Google Scholar 

  18. Zhang DW, Dong ZY, Jiang XZ, Feng MY, Li W, Gao GH (2013) A proof-of-concept fluorescent strategy for highly selective detection of Cr (VI) based on inner filter effect using a hydrophilic ionic chemoprobe. Anal Methods 5:1669–1675

    Article  CAS  Google Scholar 

  19. Shao N, Zhang Y, Cheung SM, Yang RH, Chan WH, Mo T, Liu F (2005) Copper ion-selective fluorescent probe based on the inner filter effect using a spiropyran derivative. Anal Chem 77:7294–7303

    Article  CAS  Google Scholar 

  20. Yang XF, Liu P, Wang L, Zhao M (2008) A chemosensing ensemble for the detection of cysteine based on the inner filter effect using a rhodamine B spirolactam. J Fluoresc 18:453–459

    Article  CAS  Google Scholar 

  21. Shang L, Dong SJ (2009) Design of fluorescent assays for cyanide and hydrogen peroxide based on the inner filter effect of metal nanoparticles. Anal Chem 81:1465–1470

    Article  CAS  Google Scholar 

  22. Shang L, Qin CJ, Jin LH, Wang LX, Dong SJ (2009) Turn-on fluorescent detection of cyanide based on the inner filter effect of silver nanoparticles. Analyst 134:1477–1482

    Article  CAS  Google Scholar 

  23. Xu L, Li BX, Jin Y (2011) Inner filter effect of gold nanoparticles on the fluorescence of quantum dots and its application to biological aminothiols detection. Talanta 84:558–564

    Article  CAS  Google Scholar 

  24. Zheng M, Xie ZG, Qu D, Li D, Du P, Jing XB, Sun ZC (2013) On-off-on fluorescent carbon dot nanoprobe for recognition of chromium (VI) and ascorbic acid based on the inner filter effect. ACS. ACS Appl Mater Interfaces 5:13242–13247

    Article  CAS  Google Scholar 

  25. Li GL, HL F, Chen XJ, Gong PW, Chen G, Xia L, Wang H, You JM, YN W (2016) Facile and sensitive fluorescence sensing of alkaline phosphatase activity with photoluminescent carbon dots based on inner filter effect. Anal Chem 88:2720–2726

    Article  CAS  Google Scholar 

  26. Chen CX, Zhao D, Hu T, Sun J, Yang XR (2017) Highly fluorescent nitrogen and sulfur co-doped graphene quantum dots for an inner filter effect-based cyanide probe. Sensors Actuators B Chem 241:779–788

    Article  CAS  Google Scholar 

  27. Kong WH, Wu D, Xia L, Chen XF, Li GL, Qiu NN, Chen G, Sun ZW, You JM, YN W (2017) Carbon dots for fluorescent detection of α-glucosidase activity using enzyme activated inner filter effect and its application to anti-diabetic drug discovery. Anal Chim Acta 973:91–99

    Article  CAS  Google Scholar 

  28. Zhu LJ, Peng X, Li HT, Zhang YY, Yao SZ (2017) On-off-on fluorescent silicon nanoparticles for recognition of chromium (VI) and hydrogen sulfide based on the inner filter effect. Sensors Actuators B Chem 238:196–203

    Article  CAS  Google Scholar 

  29. Pan SH, He J, Wang CJ, Zuo YG (2018) Exfoliation of two-dimensional phosphorene sheets with enhanced photocatalytic activity under simulated sunlight. Mater Lett 212:311–314

    Article  CAS  Google Scholar 

  30. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Wiley, New York, pp 291–318

    Book  Google Scholar 

  31. Chen SA, YL Y, Wang JH (2017) Inner filter effect-based fluorescent sensing systems: a review. Anal Chim Acta 999:13–26

    Article  Google Scholar 

  32. Zhang SW, Li JX, Zeng MY, JZ X, Wang XK, WP H (2014) Polymer nanodots of graphitic carbon nitride as effective fluorescent probes for the detection of Fe3+ and Cu2+ ions. Nano 6:4157–4162

    CAS  Google Scholar 

  33. WJ L, Gong XJ, Nan M, Liu Y, Shuang SM, Dong C (2015) Comparative study for N and S doped carbon dots: synthesis, characterization and applications for Fe3+ probe and cellular imaging. Anal Chim Acta 898:116–127

    Article  Google Scholar 

  34. Wang RX, Wang XF, Sun YM (2017) One-step synthesis of self-doped carbon dots with highly photoluminescence as multifunctional biosensors for detection of iron ions and pH. Sensors Actuators B Chem 241:73–79

    Article  CAS  Google Scholar 

  35. KG Q, Wang JS, Ren JS, XG Q (2013) Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron (III) ions and dopamine. Chem Eur J 19:7243–7249

    Article  Google Scholar 

  36. Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang HF, Luo PJG, Yang H, Kose ME, Chen BL, Veca LM, Xie SY (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757

    Article  CAS  Google Scholar 

  37. Cui QL, Xu JS, Wang XY, Li LD, Antonietti M, Shalom M (2016) Phenyl-modified carbon nitride quantum dots with distinct photoluminescence behavior. Angew Chem Int Ed 55:3672–3676

    Article  CAS  Google Scholar 

  38. Xia J, Zhuang YT, YL Y, Wang JH (2017) Highly fluorescent carbon polymer dots prepared at room temperature, and their application as a fluorescent probe for determination and intracellular imaging of ferric ion. Microchim Acta 184:1109–1116

    Article  CAS  Google Scholar 

  39. Wang FX, Hao QL, Zhang YH, YJ X, Lei W (2016) Fluorescence quenchometric method for determination of ferric ion using boron-doped carbon dots. Microchim Acta 183:273–279

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (21675077, and 21475055, S.X.L).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunxing Li.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 974 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Cai, J., Liu, F. et al. Highly crystalline graphitic carbon nitride quantum dots as a fluorescent probe for detection of Fe(III) via an innner filter effect. Microchim Acta 185, 134 (2018). https://doi.org/10.1007/s00604-017-2655-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2655-8

Keywords

Navigation