Skip to main content
Log in

A cascade amplification strategy of catalytic hairpin assembly and hybridization chain reaction for the sensitive fluorescent assay of the model protein carcinoembryonic antigen

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A cascade nucleic acid amplification strategy is presented for fluorometric aptamer based determination of the model protein carcinoembryonic antigen (CEA). Amplification is accomplished by combining catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR). In this assay, a specially designed single-stranded DNA containing the aptamer sequence (AS) specific for CEA is hybridized with an inhibitor strand (IS) to form a double-stranded DNA (IS@AS). In the presence of CEA, it will recognize and bind to the AS strand which causes the release of IS. By introducing two DNA hairpins (H1 and H2; these containing complementary sequences) CHA will be activated via the hybridization reactions of H1 and H2. This is accompanying by the formation of a double-stranded DNA (H1-H2) and the release of CEA@AS. The liberated CEA@AS further drives successive recycling of the CHA, thereby generating further copies of H1-H2. The resultant H1-H2 hybrids act as primers and trigger HCR with the help of other two DNA hairpins (H3 and H4) containing G-rich toehold at the 5′-terminus and 3′-terminus of H3 and H4, respectively. The fluorescent probe N-methyl mesoporphyrin IX (NMM) is finally intercalated into the G-rich domains of the long DNA nanostructures due to formation of G-quadruplex structures. This generates a fluorescent signal (best measured at excitation/emission wavelengths of 399/610 nm) that increases with the concentration of target (CEA). This aptamer-based fluorescence assay is highly sensitive and has a linear range that covers the 1 pg·mL−1 to 2 ng·mL−1 CEA concentration range, with a 0.3 pg·mL−1 detection limit.

By integrating catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR) for effective signal enhancement, a novel cascade amplification strategy is presented to develop a sensitive and selective fluorescent method for the assay of the model protein carcinoembryonic antigen (CEA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hasanzadeh M, Shadjou N (2017) Advanced nanomaterials for use in electrochemical and optical immunoassays of carcinoembryonic antigen. A review. Microchim Acta 184:389–414

    Article  CAS  Google Scholar 

  2. Wu J, Fu ZF, Yan F, Ju HX (2007) Biomedical and clinical applications of immunoassays and immunosensors for tumor markers. TrAC Trends Anal Chem 26(7):679–688

    Article  CAS  Google Scholar 

  3. He B (2017) Differential pulse voltammetric assay for the carcinoembryonic antigen using a glassy carbon electrode modified with layered molybdenum selenide, graphene, and gold nanoparticles. Microchim Acta 184(1):229–235

    Article  CAS  Google Scholar 

  4. Liu Q, Liu XP, Wei YP, Mao CJ, Niu HL, Song JM, Jin BK, Zhang SY (2017) Electrochemiluminescence immunoassay for the carcinoembryonic antigen using CdSe: Eu nanocrystals. Microchim Acta 184(5):1353–1360

    Article  CAS  Google Scholar 

  5. Yu QL, Zhan XF, Liu KP, Lv H, Duan YX (2013) Plasma-enhanced antibody immobilization for the development of a capillary-based carcinoembryonic antigen immunosensor using laser-Induced fluorescence spectroscopy. Anal Chem 85(9):4578–4585

    Article  CAS  Google Scholar 

  6. Sun XC, Lei C, Guo L, Zhou Y (2016) Giant magneto-resistance based immunoassay for the tumor marker carcinoembryonic antigen. Microchim Acta 183(3):1107–1114

    Article  CAS  Google Scholar 

  7. Sato K, Yamanaka M, Hagino T, Tokeshi M, Kimura H, Kitamori T (2004) Microchip-based enzyme-linked immunosorbent assay (microELISA) system with thermal lens detection. Lab Chip 4(6):570–575

    Article  CAS  Google Scholar 

  8. Zhou WJ, Su J, Chai YQ, Yuan R, Xiang Y (2014) Naked eye detection of trace cancer biomarkers based on biobarcode and enzyme-assisted DNA recycling hybrid amplifications. Biosens Bioelectron 53:494–498

    Article  CAS  Google Scholar 

  9. Wu YD, Guo WS, Peng WP, Zhao Q, Piao JF, Zhang B, Wu XL, Wang HJ, Gong XQ, Chang J (2017) Enhanced fluorescence ELISA based on HAT triggering fluorescence “turn-on” with enzyme-antibody dual labeled AuNP probes for ultrasensitive detection of AFP and HBsAg. Appl Mater Interfaces 9(11):9369–9377

    Article  CAS  Google Scholar 

  10. Li Y, Pu QL, Li JL, Zhou LL, Tao YY, Li YX, Yu W, Xie GM (2017) An “off-on” fluorescent switch assay for microRNA using nonenzymatic ligation-rolling circle amplification. Microchim Acta 184(11):4323–4330

    Article  CAS  Google Scholar 

  11. Liu HY, Bei XQ, Xia QT, Fu Y, Zhang S, Liu MC, Fan K, Zhang MZ, Yang Y (2016) Enzyme-free electrochemical detection of microRNA-21 using immobilized hairpin probes and a target-triggered hybridization chain reaction amplification strategy. Microchim Acta 183(1):297–304

    Article  CAS  Google Scholar 

  12. Yang JR, Tang M, Diao W, Cheng WB, Zhang Y, Yan YR (2016) Electrochemical strategy for ultrasensitive detection of microRNA based on MNAzyme-mediated rolling circle amplification on a gold electrode. Microchim Acta 183(11):3061–3067

    Article  CAS  Google Scholar 

  13. Abnous K, Danesh NM, Ramezani M, Taghdisi SM (2017) Colorimetric determination of the microcystin leucine-arginine based on the use of a hairpin aptamer, graphene oxide, and Methylene Blue acting as an optical probe. Microchim Acta 184:4451–4457

    Article  CAS  Google Scholar 

  14. Wang XY, Sun DP, Tong YL, Zhong YS, Chen ZG (2017) A voltammetric aptamer-based thrombin biosensor exploiting signal amplification via synergetic catalysis by DNAzyme and enzyme decorated AuPd nanoparticles on a poly(o-phenylenediamine) support. Microchim Acta 184(6):1791–1799

    Article  CAS  Google Scholar 

  15. Bao BQ, Zhu J, Gong LN, Chen J, Pan YR, Wang LH (2017) Sensitive DNA detection using cascade amplification strategy based on conjugated polyelectrolytes and hybridization chain reaction. RSC Adv 7:3528–3533

    Article  Google Scholar 

  16. Li X, Song J, Xue QW, You FH, Lu X, Kong YC, Ma SY, Jiang W, Li CZ (2016) A label-free and sensitive fluorescent qualitative assay for bisphenol a based on rolling circle amplification/exonuclease III-combined cascade amplification. Nano 6(10):190–200

    Google Scholar 

  17. Niu SY, Jiang Y, Zhang SS (2010) Fluorescence detection for DNA using hybridization chain reaction with enzyme-amplification. Chem Commun 46:3089–3091

    Article  CAS  Google Scholar 

  18. Zhang CH, Tang Y, Sheng YY, Wang H, Wu Z, Jiang JH (2016) Ultrasensitive detection of microRNAs using catalytic hairpin assembly coupled with enzymatic repairing amplification. Chem Commun 52(93):13584–13587

    Article  CAS  Google Scholar 

  19. Zhu Y, Wang HJ, Wang L, Zhu J, Jiang W (2016) Cascade signal amplification based on copper nanoparticle-reported rolling circle amplification for ultrasensitive electrochemical detection of the prostate cancer biomarker. Appl Mater Interfaces 8:2573–2581

    Article  CAS  Google Scholar 

  20. Quan K, Huang J, Yang XH, Yang YJ, Ying L, Wang H, Xie NL, Ou M, Wang KM (2016) Powerful amplification cascades of FRET-based two-layer nonenzymatic nucleic acid circuits. Anal Chem 88(11):5857–5864

    Article  CAS  Google Scholar 

  21. Wei YL, Zhou WJ, Li X, Chai YQ, Yuan R, Xiang Y (2016) Coupling hybridization chain reaction with catalytic hairpin assembly enables non-enzymatic and sensitive fluorescent detection of microRNA cancer biomarkers. Biosens Bioelectron 77:416–420

    Article  CAS  Google Scholar 

  22. Kolpashchikov DM (2008) Split DNA enzyme for visual single nucleotide polymorphism typing. J Am Chem Soc 130(10):2934–2935

    Article  CAS  Google Scholar 

  23. Hu D, Pu F, Huang ZZ, Ren JS, Qu XG (2010) A quadruplex-based, label-free, and real-time fluorescence assay for RNase H activity and inhibition. Chem Eur J 16(8):2605–2610

    Article  CAS  Google Scholar 

  24. Hao YL, Guo QQ, Wu HY, Guo LQ, Zhong LS, Wang J, Lin TR, Fu FF, Chen GN (2014) Amplified colorimetric detection of mercuric ions through autonomous assembly of G-quadruplex DNAzyme nanowires. Biosens Bioelectron 52:261–264

    Article  CAS  Google Scholar 

  25. Zhao D, Wang Y, Nie GM (2016) Electrochemical immunosensor for the carcinoembryonic antigen based on a nanocomposite consisting of reduced graphene oxide, gold nanoparticles and poly (indole-6-carboxylic acid). Microchim Acta 183(11):2925–2932

    Article  CAS  Google Scholar 

  26. Zhang F, Mao L, Zhu MQ (2014) Ultrasensitive immunoassay for free prostate-specific antigen based on ferrocenecarboxylate enhanced cathodic electrochemiluminescence of peroxydisulfate. Microchim Acta 181(11-12):1285–1291

    Article  CAS  Google Scholar 

  27. Hu WH, He GL, Zhang HH, Wu XS, Li JL, Zhao ZL, Qiao Y, Lu ZS, Liu Y, Li CM (2014) Polydopamine-functionalization of Graphene Oxide to enable dual signal amplification for sensitive surface plasmon resonance imaging detection of biomarker. Anal Chem 86(9):4488–4493

    Article  CAS  Google Scholar 

  28. Chon H, Lee S, Son SW, Oh CH, Choo J (2009) Highly sensitive immunoassay of lung cancer marker carcinoembryonic antigen using surface-enhanced raman scattering of hollow gold nanospheres. Anal Chem 81(8):3029–3034

    Article  CAS  Google Scholar 

  29. Liu MY, Jia CP, Jin QH, Lou XH, Yao SH, Xiang JQ, Zhao JL (2010) Novel colorimetric enzyme immunoassay for the detection of carcinoembryonic antigen. Talanta 81(4-5):1625–1629

    Article  CAS  Google Scholar 

  30. Zhu J, Wang JF, Li JJ, Zhao JW (2016) Specific detection of carcinoembryonic antigen based on fluorescence quenching of Au-Ag core-shell nanotriangle probe. Sensors Actuators B Chem 233:214–222

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We deeply appreciate the NNSF of China for the financial support to this work (21775123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenju Xu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 300 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Zhou, X., Zhao, J. et al. A cascade amplification strategy of catalytic hairpin assembly and hybridization chain reaction for the sensitive fluorescent assay of the model protein carcinoembryonic antigen. Microchim Acta 185, 100 (2018). https://doi.org/10.1007/s00604-017-2620-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2620-6

Keywords

Navigation