Skip to main content
Log in

Connecting the Dirac Equation in Flat and Curved Spacetimes via Unitary Transformation

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

In this work, the extension of the symmetrically spherical Dirac equation in the context of supersymmetric quantum mechanics in curved spacetime is investigated in presence of vector and tensor potentials given by V(r) and A(r), respectively, with the line element given by \(ds^2 = (1+\alpha ^2 U(r))^2(dt^2-dr^2) - r^2d\theta ^2 - r^2\sin ^2\theta d\phi ^2\), where U(r) is a scalar potential and \(\alpha \) is fine structure constant. Through a unitary transformation given by \(U^{'}(\eta ) = \exp (i\alpha \eta \sigma ^2/2)\) we decouple the radial wave functions and obtain an equation analogous to Schrödinger equation in the context of supersymmetric quantum mechanics when \( U(r) = -\epsilon V(r) \), so we can write the potential V(r) , U(r) and A(r) in terms of the superpotential W(r) . With this, the class of shape-invariant potentials can be exact solved in curved spacetime with the coupling considered. For the particular case \( \eta = 0 \), we recover the problem in flat spacetime, so the unitary operator \( U^{'}(\eta ) \) connects the systems with shape-invariant potentials in flat and curved spacetimes. As applications, two systems were analyzed: the harmonic oscillator and the Coulomb potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Liboff, Introductory Quantum Mechanics (Addison-Wesley, Boston, 1980)

    MATH  Google Scholar 

  2. M. Moshinsky, A. Szczepaniak, J. Phys. A 22, L817 (1989)

    Article  ADS  Google Scholar 

  3. J.J. Sakurai, J. Napolitano, Modern Quantum Mechanics, 2nd edn. (Addison-Wesley, New York, 1993), pp. 508–509

    Google Scholar 

  4. A. Khare, U.P. Sukhatme, J. Phys. A Math. Gen. 26, L901 (1993)

    Article  ADS  Google Scholar 

  5. L. Gendenshtein, JETP Lett. 38, 356 (1983)

    ADS  Google Scholar 

  6. F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  7. F. Cooper, A. Khare, U. Sukhatme, Supersymmetry in Quantum Mechanics (World Scientific Publishing, Singapore, 2001)

    Book  MATH  Google Scholar 

  8. R. De, R. Dutt, U. Sukhatme, J. Phys. A 25, L843 (2003)

    Article  Google Scholar 

  9. A.D. Alhaidari, J. Phys. A 34, 9827 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  10. A.D. Alhaidari, Int. J. Mod. Phys. A 18, 4955 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  11. G. Ferrari, G. Cuoghi, Phys. Rev. Lett. 100, 230403 (2008)

    Article  ADS  Google Scholar 

  12. T. Kosugi, J. Phys. Soc. Jpn. 80, 073602 (2011)

    Article  ADS  Google Scholar 

  13. R.C.T. da Costa, Phys. Rev. A 23, 1982 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  14. H. Ju, I.D. Kim, B. Vagner, Sundaram. Phys. Rev. B 46, 9501 (1992)

    Article  ADS  Google Scholar 

  15. H. Aoki, H. Suezawa, Phys. Rev. A 46, R1163 (1992)

    Article  ADS  Google Scholar 

  16. A.G.M. Schmidt, Phys. E 106, 200 (2019)

    Article  Google Scholar 

  17. M.D. Oliveira, A.G.M. Schmidt, J. Math. Phys. 60, 032102 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  18. M.D. Oliveira, A.G.M. Schmidt, Phys. E 120, 114029 (2020)

  19. F.T. Brandt, J.A. Sánchez-Monroy, Phys. Lett. A 380, 3036 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. L.C.N. Santos, C.C. Barros, Eur. Phys. J. C 76, 560 (2016)

    Article  ADS  Google Scholar 

  21. V.M. Villalba, U. Percoco, J. Math. Phys. 31, 715 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  22. C. Sabín, Sci. Rep. 7, 40346 (2017)

    Article  ADS  Google Scholar 

  23. H. Panahi, L. Jahangiri, Ann. Phys. 354, 306 (2015)

    Article  ADS  Google Scholar 

  24. M.D. de Oliveira, A.G.M. Schmidt, Ann. Phys. 401, 21 (2019)

    Article  ADS  Google Scholar 

  25. M.D. de Oliveira, A.G.M. Schmidt, Phys. Scr. 95, 055304 (2020)

    Article  ADS  Google Scholar 

  26. M.D. de Oliveira, A.G.M. Schmidt, Phys. Scr. 96, 055301 (2021)

    Article  ADS  Google Scholar 

  27. M.D. de Oliveira, Eur. Phys. J. Plus 136, 533 (2021)

    Article  Google Scholar 

  28. M.D. de Oliveira, Int. J. Mod. Phys. A 36, 2150216 (2021)

    Article  Google Scholar 

  29. M.D. de Oliveira, A.G.M. Schmidt, Few-Body Syst. 62, 90 (2021)

    Article  ADS  Google Scholar 

  30. M.D. de Oliveira, A.G.M. Schmidt, Quasi-exact solution of the anharmonic oscillator in curved space-time with tensor potential of type \(Ar+B/r^3\) and spin and pseudo-spin symmetries, Accepted in Int. J. Mod. Phys. A (2022)

  31. M.A.H. Vozmediano, F. de Juan, A. Cortijo, J. Phys. Conf. Ser. 129, 012001 (2008)

    Article  Google Scholar 

  32. A. Gallerati, J. Phys. Condens. Matter 33, 135501 (2021)

    Article  ADS  Google Scholar 

  33. F.M. Andrade, E.O. Silva, Eur. Phys. J. C 74, 3187 (2014)

    Article  ADS  Google Scholar 

  34. D.F. Lima, F.M. Andrade, L.B. Castro, C. Filgueiras, E.O. Silva, Eur. Phys. J. C 79, 596 (2019)

    Article  ADS  Google Scholar 

  35. M. Hosseinpour, H. Hassanabadi, M. de Montigny, Eur. Phys. J. C 79, 311 (2019)

    Article  ADS  Google Scholar 

  36. L.C.N. Santos, C.C. Barros, Eur. Phys. J. C 77, 186 (2017)

    Article  ADS  Google Scholar 

  37. L.C.N. Santos, C.C. Barros, Eur. Phys. J. C 78, 13 (2018)

    Article  ADS  Google Scholar 

  38. J. Rodríguez-Laguna, L. Tarruell, M. Lewenstein, A. Celi, Phys. Rev. A 95, 013627 (2017)

    Article  ADS  Google Scholar 

  39. L.C.B. Crispino, A. Higuchi, G.E.A. Matsas, Rev. Mod. Phys. 80, 787 (2008)

    Article  ADS  Google Scholar 

  40. O. Boada, A. Celi, J.I. Latorre, M. Lewenstein, New J. Phys. 13, 044047 (2011)

  41. M. Nouri-Zonoz, B. Nazari, Phys. Rev. D 82, 044047 (2010)

    Article  ADS  Google Scholar 

  42. B. Nazari, M. Nouri-Zonoz, Phys. Rev. D 85, 044060 (2012)

    Article  ADS  Google Scholar 

  43. B. Mula, S.N. Santalla, J. Rodríguez-Laguna, Phys. Rev. Res. 3, 013062 (2021)

    Article  Google Scholar 

  44. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, pp. 133–135; 148–149; 179–182 (1972)

  45. G.B. Arfken, H.J. Weber, F.E. Harris, Mathematical Methods for Physicists: A Comprehensive Guide, 7th edn. (Elsevier, Amsterdam, 2013)

    MATH  Google Scholar 

  46. A. Kratzer, Z. Phys. 3, 289 (1920)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, M.D. Connecting the Dirac Equation in Flat and Curved Spacetimes via Unitary Transformation. Few-Body Syst 63, 39 (2022). https://doi.org/10.1007/s00601-022-01743-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-022-01743-3

Navigation