Skip to main content
Log in

Chiral Effective Field Theory after Thirty Years: Nuclear Lattice Simulations

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The introduction of chiral effective field theory by Steven Weinberg three decades ago has had a profound and lasting impact on nuclear physics. This brief review explores the impact of Weinberg’s work on the field of nuclear lattice simulations. Rather than a summary of technical details, an effort is made to present the conceptual advances that made much of the recent progress possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. T. Abe, R. Seki, Lattice calculation of thermal properties of low-density neutron matter with NN effective field theory. Phys. Rev. C79, 054,002 (2009)

    Google Scholar 

  2. A. Alexandru, P. Bedaque, E. Berkowitz, N.C. Warrington, Structure Factors of Neutron Matter at Finite Temperature. Phys. Rev. Lett. 126(13), 132,701 (2021). https://doi.org/10.1103/PhysRevLett.126.132701

    Article  Google Scholar 

  3. M.K. Banerjee, T.D. Cohen, B.A. Gelman, The Nucleon nucleon interaction and large N(c) QCD. Phys. Rev. C 65, 034,011 (2002). https://doi.org/10.1103/PhysRevC.65.034011

    Article  Google Scholar 

  4. B. Borasoy, E. Epelbaum, H. Krebs, D. Lee, U.G. Meißner, Lattice Simulations for Light Nuclei: Chiral Effective Field Theory at Leading Order. Eur. Phys. J. A 31, 105–123 (2007). https://doi.org/10.1140/epja/i2006-10154-1

    Article  ADS  Google Scholar 

  5. B. Borasoy, E. Epelbaum, H. Krebs, D. Lee, U.G. Meißner, Two-particle scattering on the lattice: Phase shifts, spin-orbit coupling, and mixing angles. Eur. Phys. J. A 34, 185–196 (2007). https://doi.org/10.1140/epja/i2007-10500-9

    Article  ADS  Google Scholar 

  6. B. Borasoy, E. Epelbaum, H. Krebs, D. Lee, U.G. Meißner, Dilute neutron matter on the lattice at next-to-leading order in chiral effective field theory. Eur. Phys. J. A 35, 357–367 (2008). https://doi.org/10.1140/epja/i2008-10545-2

    Article  ADS  Google Scholar 

  7. B. Borasoy, H. Krebs, D. Lee, U.G. Meißner, The Triton and three-nucleon force in nuclear lattice simulations. Nucl. Phys. A 768, 179–193 (2006). https://doi.org/10.1016/j.nuclphysa.2006.01.009

    Article  ADS  Google Scholar 

  8. S. Bour, S. Koenig, D. Lee, H..W. Hammer, U..G. Meißner, Topological phases for bound states moving in a finite volume. Phys. Rev. D 8484, 091,503 (2011). https://doi.org/10.1103/PhysRevD.84.091503

    Article  Google Scholar 

  9. S. Bour, D. Lee, H.W. Hammer, U.G. Meißner, Ab initio Lattice Results for Fermi Polarons in Two Dimensions. Phys. Rev. Lett. 115(18), 185,301 (2015). https://doi.org/10.1103/PhysRevLett.115.185301

    Article  Google Scholar 

  10. L. Bovermann, E. Epelbaum, H. Krebs, D. Lee, Scattering phase shifts and mixing angles for an arbitrary number of coupled channels on the lattice. Phys. Rev. C 100(6), 064,001 (2019). https://doi.org/10.1103/PhysRevC.100.064001

    Article  Google Scholar 

  11. R. Brockmann, J. Frank, Goo. Phys. Rev. Lett. 68, 1830–1833 (1992)

    Article  ADS  Google Scholar 

  12. A. Bulgac, J.E. Drut, P. Magierski, Spin 1/2 Fermions in the unitary regime: A Superfluid of a new type. Phys. Rev. Lett. 96, 090,404 (2006). https://doi.org/10.1103/PhysRevLett.96.090404

    Article  MATH  Google Scholar 

  13. E. Burovski, N. Prokof’ev, B. Svistunov, M. Troyer, The Fermi Hubbard model at unitarity. New J. Phys. 8(8), 153 (2006). https://doi.org/10.1088/1367-2630/8/8/153

    Article  ADS  Google Scholar 

  14. A. Calle Cordon, E. Ruiz Arriola, Serber symmetry, Large N(c) and Yukawa-like One Boson Exchange Potentials. Phys. Rev. C 80, 014,002 (2009). https://doi.org/10.1103/PhysRevC.80.014002

    Article  Google Scholar 

  15. S. Chandrasekharan, M. Pepe, F.D. Steffen, U.J. Wiese, Nonlinear realization of chiral symmetry on the lattice. JHEP 12, 035 (2003). https://doi.org/10.1088/1126-6708/2003/12/035

    Article  ADS  MathSciNet  Google Scholar 

  16. J.W. Chen, D.B. Kaplan, A Lattice theory for low-energy fermions at finite chemical potential. Phys. Rev. Lett. 92, 257,002 (2004). https://doi.org/10.1103/PhysRevLett.92.257002

    Article  Google Scholar 

  17. J.W. Chen, D. Lee, T. Schäfer, Inequalities for light nuclei in the Wigner symmetry limit. Phys. Rev. Lett. 93, 242,302 (2004). https://doi.org/10.1103/PhysRevLett.93.242302

    Article  Google Scholar 

  18. Z. Davoudi, M.J. Savage, Improving the volume dependence of two-body binding energies calculated with lattice QCD. Phys. Rev. D 84, 114,502 (2011). https://doi.org/10.1103/PhysRevD.84.114502

    Article  Google Scholar 

  19. P. Demol, T. Duguet, A. Ekström, M. Frosini, K. Hebeler, S. König, D. Lee, A. Schwenk, V. Somà, A. Tichai, Improved many-body expansions from eigenvector continuation. Phys. Rev. C 101(4), 041,302 (2020). https://doi.org/10.1103/PhysRevC.101.041302

    Article  Google Scholar 

  20. P. Demol, M. Frosini, A. Tichai, V. Somà, T. Duguet, Bogoliubov many-body perturbation theory under constraint. Ann. Phys. 424, 168,358 (2021). https://doi.org/10.1016/j.aop.2020.168358

    Article  MathSciNet  MATH  Google Scholar 

  21. J.E. Drut, A.N. Nicholson, Lattice methods for strongly interacting many-body systems. J. Phys. G Nucl. Part. Phys. 40(4), 043101 (2013). https://doi.org/10.1088/0954-3899/40/4/043101

    Article  ADS  Google Scholar 

  22. S. Elhatisari, E. Epelbaum, H. Krebs, T.A. Lähde, D. Lee, N. Li, B.N. Lu, U.G. Meißner, G. Rupak, Ab initio Calculations of the Isotopic Dependence of Nuclear Clustering. Phys. Rev. Lett. 119(22), 222,505 (2017). https://doi.org/10.1103/PhysRevLett.119.222505

    Article  Google Scholar 

  23. S. Elhatisari, D. Lee, U.G. Meißner, G. Rupak, Nucleon-deuteron scattering using the adiabatic projection method. Eur. Phys. J. A 52(6), 174 (2016). https://doi.org/10.1140/epja/i2016-16174-2

    Article  ADS  Google Scholar 

  24. S. Elhatisari, D. Lee, G. Rupak, E. Epelbaum, H. Krebs, T.A. Lähde, T. Luu, U.G. Meißner, Ab initio alpha-alpha scattering. Nature 528, 111 (2015). https://doi.org/10.1038/nature16067

    Article  ADS  Google Scholar 

  25. S. Elhatisari et al., Nuclear binding near a quantum phase transition. Phys. Rev. Lett. 117(13), 132,501 (2016). https://doi.org/10.1103/PhysRevLett.117.132501

    Article  Google Scholar 

  26. E. Epelbaum, H. Krebs, T.A. Lahde, D. Lee, U.G. Meißner, Structure and rotations of the Hoyle state. Phys. Rev. Lett. 109, 252,501 (2012). https://doi.org/10.1103/PhysRevLett.109.252501

    Article  Google Scholar 

  27. E. Epelbaum, H. Krebs, T.A. Lähde, D. Lee, U.G. Meißner, Viability of Carbon-based life as a function of the light quark mass. Phys. Rev. Lett. 110(11), 112,502 (2013). https://doi.org/10.1103/PhysRevLett.110.112502

    Article  Google Scholar 

  28. E. Epelbaum, H. Krebs, T.A. Lähde, D. Lee, U.G. Meißner, G. Rupak, Ab Initio Calculation of the Spectrum and Structure of \(^{16}\)O. Phys. Rev. Lett. 112(10), 102,501 (2014). https://doi.org/10.1103/PhysRevLett.112.102501

    Article  Google Scholar 

  29. E. Epelbaum, H. Krebs, D. Lee, U.G. Meißner, Ground state energy of dilute neutron matter at next-to-leading order in lattice chiral effective field theory. Eur. Phys. J. A 40, 199–213 (2009). https://doi.org/10.1140/epja/i2009-10755-0

    Article  ADS  Google Scholar 

  30. E. Epelbaum, H. Krebs, D. Lee, U.G. Meißner, Lattice chiral effective field theory with three-body interactions at next-to-next-to-leading order. Eur. Phys. J. A 41, 125–139 (2009). https://doi.org/10.1140/epja/i2009-10764-y

    Article  ADS  Google Scholar 

  31. E. Epelbaum, H. Krebs, D. Lee, U.G. Meißner, Lattice calculations for A=3,4,6,12 nuclei using chiral effective field theory. Eur. Phys. J. A 45, 335–352 (2010). https://doi.org/10.1140/epja/i2010-11009-x

    Article  ADS  Google Scholar 

  32. E. Epelbaum, H. Krebs, D. Lee, U.G. Meißner, Lattice effective field theory calculations for A = 3,4,6,12 nuclei. Phys. Rev. Lett. 104, 142,501 (2010). https://doi.org/10.1103/PhysRevLett.104.142501

    Article  Google Scholar 

  33. E. Epelbaum, H. Krebs, D. Lee, U.G. Meißner, Ab initio calculation of the Hoyle state. Phys. Rev. Lett. 106, 192,501 (2011). https://doi.org/10.1103/PhysRevLett.106.192501

    Article  Google Scholar 

  34. D. Frame, R. He, I. Ipsen, D. Lee, D. Lee, E. Rrapaj, Eigenvector continuation with subspace learning. Phys. Rev. Lett. 121(3), 032,501 (2018). https://doi.org/10.1103/PhysRevLett.121.032501

    Article  Google Scholar 

  35. D. Frame, T.A. Lähde, D. Lee, U.G. Meißner, Impurity Lattice Monte Carlo for Hypernuclei. Eur. Phys. J. A 56(10), 248 (2020). https://doi.org/10.1140/epja/s10050-020-00257-y

    Article  ADS  Google Scholar 

  36. D.K. Frame, Ab Initio simulations of light nuclear systems using eigenvector continuation and auxiliary field Monte Carlo. Other thesis (2019)

  37. R. He, N. Li, B.N. Lu, D. Lee, Superfluid condensate fraction and pairing wave function of the unitary Fermi gas. Phys. Rev. A 101(6), 063,615 (2020). https://doi.org/10.1103/PhysRevA.101.063615

    Article  MathSciNet  Google Scholar 

  38. M.D. Hoffman, A.C. Loheac, W.J. Porter, J.E. Drut, Thermodynamics of one-dimensional SU(4) and SU(6) fermions with attractive interactions. Phys. Rev. A 95(3), 033,602 (2017). https://doi.org/10.1103/PhysRevA.95.033602

    Article  Google Scholar 

  39. J. Hubbard, Calculation of partition functions. Phys. Rev. Lett. 3, 77–80 (1959). https://doi.org/10.1103/PhysRevLett.3.77

    Article  ADS  Google Scholar 

  40. Y. Kanada-En’yo, D. Lee, Effective interactions between nuclear clusters. Phys. Rev. C 103(2), 024,318 (2021). https://doi.org/10.1103/PhysRevC.103.024318

    Article  Google Scholar 

  41. D.B. Kaplan, A.V. Manohar, The Nucleon-nucleon potential in the 1/N(c) expansion. Phys. Rev. C 56, 76–83 (1997). https://doi.org/10.1103/PhysRevC.56.76

    Article  ADS  Google Scholar 

  42. D.B. Kaplan, M.J. Savage, The Spin flavor dependence of nuclear forces from large n QCD. Phys. Lett. B 365, 244–251 (1996). https://doi.org/10.1016/0370-2693(95)01277-X

    Article  ADS  Google Scholar 

  43. S. Koenig, D. Lee, H.W. Hammer, Non-relativistic bound states in a finite volume. Ann. Phys. 327, 1450–1471 (2012). https://doi.org/10.1016/j.aop.2011.12.015

    Article  ADS  MATH  Google Scholar 

  44. S. König, D. Lee, Volume Dependence of N-Body Bound States. Phys. Lett. B 779, 9–15 (2018). https://doi.org/10.1016/j.physletb.2018.01.060

    Article  ADS  Google Scholar 

  45. S.E. Koonin, Auxiliary-field Monte Carlo methods. J. Stat. Phys. 43(5–6), 985–990 (1986). https://doi.org/10.1007/BF02628325

    Article  ADS  MathSciNet  Google Scholar 

  46. C. Körber, E. Berkowitz, T. Luu, Sampling General N-Body Interactions with Auxiliary Fields. EPL 119(6), 60,006 (2017). https://doi.org/10.1209/0295-5075/119/60006

    Article  Google Scholar 

  47. C. Körber, T. Luu, Applying twisted boundary conditions for few-body nuclear systems. Phys. Rev. C 93(5), 054,002 (2016). https://doi.org/10.1103/PhysRevC.93.054002

    Article  Google Scholar 

  48. T.A. Lähde, E. Epelbaum, H. Krebs, D. Lee, U.G. Meißner, G. Rupak, Lattice effective field theory for medium-mass nuclei. Phys. Lett. B 732, 110–115 (2014). https://doi.org/10.1016/j.physletb.2014.03.023

    Article  ADS  Google Scholar 

  49. T.A. Lähde, T. Luu, D. Lee, U.G. Meißner, E. Epelbaum, H. Krebs, G. Rupak, Nuclear lattice simulations using symmetry-sign extrapolation. Eur. Phys. J. A 51(7), 92 (2015). https://doi.org/10.1140/epja/i2015-15092-1

    Article  ADS  Google Scholar 

  50. T.A. Lähde, U.G. Meißner, Nuclear lattice effective field theory: an introduction, vol. 957 (Springer, Berlin, 2019). https://doi.org/10.1007/978-3-030-14189-9

    Book  MATH  Google Scholar 

  51. D. Lee, Inequalities for low-energy symmetric nuclear matter. Phys. Rev. C 70, 064,002 (2004). https://doi.org/10.1103/PhysRevC.70.064002

    Article  Google Scholar 

  52. D. Lee, Pressure inequalities for nuclear and neutron matter. Phys. Rev. C 71, 044,001 (2005). https://doi.org/10.1103/PhysRevC.71.044001

    Article  Google Scholar 

  53. D. Lee, Spectral convexity for attractive SU(2N) fermions. Phys. Rev. Lett. 98, 182,501 (2007). https://doi.org/10.1103/PhysRevLett.98.182501

    Article  Google Scholar 

  54. D. Lee, Lattice simulations for few- and many-body systems. Prog. Part. Nucl. Phys. 63, 117–154 (2009). https://doi.org/10.1016/j.ppnp.2008.12.001

    Article  ADS  Google Scholar 

  55. D. Lee, B. Borasoy, T. Schäfer, Nuclear lattice simulations with chiral effective field theory. Phys. Rev. C 70, 014,007 (2004). https://doi.org/10.1103/PhysRevC.70.014007

    Article  Google Scholar 

  56. D. Lee, T. Schäfer, Neutron matter on the lattice with pionless effective field theory. Phys. Rev. C 72, 024,006 (2005). https://doi.org/10.1103/PhysRevC.72.024006

    Article  Google Scholar 

  57. D. Lee, T. Schäfer, Cold dilute neutron matter on the lattice. I. Lattice virial coefficients and large scattering lengths. Phys. Rev. C 73, 015,201 (2006). https://doi.org/10.1103/PhysRevC.73.015201

    Article  Google Scholar 

  58. D. Lee, T. Schäfer, Cold dilute neutron matter on the lattice. II. Results in the unitary limit. Phys. Rev. C 73, 015,202 (2006). https://doi.org/10.1103/PhysRevC.73.015202

    Article  Google Scholar 

  59. D. Lee et al., Hidden spin-isospin exchange symmetry. Phys. Rev. Lett. 127(6), 062,501 (2021). https://doi.org/10.1103/PhysRevLett.127.062501

    Article  Google Scholar 

  60. R. Lewis, P.P.A. Ouimet, Lattice regularization for chiral perturbation theory. Phys. Rev. D 64, 034,005 (2001). https://doi.org/10.1103/PhysRevD.64.034005

    Article  Google Scholar 

  61. N. Li, S. Elhatisari, E. Epelbaum, D. Lee, B. Lu, U.G. Meißner, Galilean invariance restoration on the lattice. Phys. Rev. C 99(6), 064,001 (2019). https://doi.org/10.1103/PhysRevC.99.064001

    Article  Google Scholar 

  62. N. Li, S. Elhatisari, E. Epelbaum, D. Lee, B. Lu, U.G. Meißner, Neutron-proton scattering with lattice chiral effective field theory at next-to-next-to-next-to-leading order. Phys. Rev. C 98(4), 044,002044,002 (2018). https://doi.org/10.1103/PhysRevC.98.044002

    Article  Google Scholar 

  63. B.N. Lu, T.A. Lähde, D. Lee, U.G. Meißner, Breaking and restoration of rotational symmetry on the lattice for bound state multiplets. Phys. Rev. D 90(3), 034,507 (2014). https://doi.org/10.1103/PhysRevD.90.034507

    Article  Google Scholar 

  64. B.N. Lu, T.A. Lähde, D. Lee, U.G. Meißner, Precise determination of lattice phase shifts and mixing angles. Phys. Lett. B 760, 309–313 (2016). https://doi.org/10.1016/j.physletb.2016.06.081

    Article  ADS  Google Scholar 

  65. B.N. Lu, N. Li, S. Elhatisari, D. Lee, J.E. Drut, T.A. Lähde, E. Epelbaum, U.G. Meißner, \(Ab Initio\) nuclear thermodynamics. Phys. Rev. Lett. 125(19), 192,502 (2020). https://doi.org/10.1103/PhysRevLett.125.192502

    Article  Google Scholar 

  66. B.N. Lu, N. Li, S. Elhatisari, D. Lee, E. Epelbaum, U.G. Meißner, Essential elements for nuclear binding. Phys. Lett. B 797, 134,863 (2019). https://doi.org/10.1016/j.physletb.2019.134863

    Article  Google Scholar 

  67. M. Luscher, Volume dependence of the energy spectrum in massive quantum field theories. 2. Scattering states. Commun. Math. Phys. 105, 153–188 (1986). https://doi.org/10.1007/BF01211097

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. H.M. Muller, S.E. Koonin, R. Seki, U. van Kolck, Nuclear matter on a lattice. Phys. Rev. C 61, 044,320 (2000). https://doi.org/10.1103/PhysRevC.61.044320

    Article  Google Scholar 

  69. M. Pine, D. Lee, G. Rupak, Adiabatic projection method for scattering and reactions on the lattice. Eur. Phys. J. A 49, 151 (2013). https://doi.org/10.1140/epja/i2013-13151-3

    Article  ADS  Google Scholar 

  70. A. Rokash, E. Epelbaum, H. Krebs, D. Lee, Effective forces between quantum bound states. Phys. Rev. Lett. 118(23), 232,502 (2017). https://doi.org/10.1103/PhysRevLett.118.232502

    Article  Google Scholar 

  71. A. Rokash, M. Pine, S. Elhatisari, D. Lee, E. Epelbaum, H. Krebs, Scattering cluster wave functions on the lattice using the adiabatic projection method. Phys. Rev. C 92(5), 054,612 (2015). https://doi.org/10.1103/PhysRevC.92.054612

    Article  Google Scholar 

  72. E. Ruiz Arriola, Low scale saturation of effective NN interactions and their symmetries. Symmetry 8(6), 42 (2016). https://doi.org/10.3390/sym8060042

    Article  MathSciNet  MATH  Google Scholar 

  73. G. Rupak, D. Lee, Radiative capture reactions in lattice effective field theory. Phys. Rev. Lett. 111(3), 032,502 (2013). https://doi.org/10.1103/PhysRevLett.111.032502

    Article  Google Scholar 

  74. A. Sarkar, D. Lee, Convergence of eigenvector continuation. Phys. Rev. Lett. 126(3), 032,501 (2021). https://doi.org/10.1103/PhysRevLett.126.032501

    Article  MathSciNet  Google Scholar 

  75. S. Shen, T.A. Lähde, D. Lee, U.G. Meißner, Wigner SU(4) symmetry, clustering, and the spectrum of \(^{12}\)C (2021)

  76. I.A. Shushpanov, A.V. Smilga, Chiral perturbation theory with lattice regularization. Phys. Rev. D 59, 054,013 (1999). https://doi.org/10.1103/PhysRevD.59.054013

    Article  Google Scholar 

  77. Y.H. Song, Y. Kim, N. Li, B.N. Lu, R. He, D. Lee, Quantum Many-Body Calculations using Body-Centered Cubic Lattices (2021)

  78. G. Stellin, S. Elhatisari, U.G. Meißner, Breaking and restoration of rotational symmetry in the low-energy spectrum of light alpha-conjugate nuclei on the lattice I: \(^{8}{\rm Be}\) and \(^{12}{\rm C}\). Eur. Phys. J. A 54(12), 232 (2018). https://doi.org/10.1140/epja/i2018-12671-6

    Article  ADS  Google Scholar 

  79. R.L. Stratonovich, On a method of calculating quantum distribution functions. Soviet Phys. Doklady 2, 416–419 (1958)

    ADS  MATH  Google Scholar 

  80. V. Timoteo, S. Szpigel, E. Ruiz Arriola, Symmetries of the similarity renormalization group for nuclear forces. Phys. Rev. C 86, 034,002 (2012). https://doi.org/10.1103/PhysRevC.86.034002

  81. S. Weinberg, Nuclear forces from chiral lagrangians. Phys. Lett. B 251, 288–292 (1990)

    Article  ADS  Google Scholar 

  82. S. Weinberg, Effective chiral lagrangians for nucleon - pion interactions and nuclear forces. Nucl. Phys. B 363, 3–18 (1991)

    Article  ADS  Google Scholar 

  83. S. Weinberg, Three body interactions among nucleons and pions. Phys. Lett. B 295, 114–121 (1992)

    Article  ADS  Google Scholar 

  84. E. Wigner, On the Consequences of the Symmetry of the Nuclear Hamiltonian on the Spectroscopy of Nuclei. Phys. Rev. 51, 106–119 (1937). https://doi.org/10.1103/PhysRev.51.106

    Article  ADS  MATH  Google Scholar 

  85. M. Wingate, Field theoretic study of a cold Fermi gas in the unitary limit. PoS LAT2006, 153 (2006). https://doi.org/10.22323/1.032.0153

    Article  Google Scholar 

  86. G. Wlazłowski, J.W. Holt, S. Moroz, A. Bulgac, K.J. Roche, Auxiliary-field quantum Monte Carlo simulations of neutron matter in chiral effective field theory. Phys. Rev. Lett. 113(18), 182,503 (2014). https://doi.org/10.1103/PhysRevLett.113.182503

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to Jose Manuel Alarcón, Buḡra Borasoy, Lukas Bovermann, Jiunn-Wei Chen, Dechuan Du, Joaquín Drut, Serdar Elhatisari, Evgeny Epelbaum, Dillon Frame, Rongzheng He, Youngman Kim, Nico Klein, Sebastian König, Hermann Krebs, Timo Lähde, Ning Li, Bing-Nan Lu, Yuanzhuo Ma, Ulf-G. Meißner, Michelle Pine, Alexander Rokash, Gautam Rupak, Avik Sarkar, Thomas Schäfer, Shihang Shen, Gianluca Stellin, Young-Ho Song, and all the members of the Nuclear Lattice Effective Field Theory Collaboration for their deep insights and productive collaboration. Special thanks also to Ulf-G. Meißner for his careful reading and comments on this review. Funding is gratefully acknowledged by the U.S. Department of Energy (DE-SC0013365 and DE-SC0021152) and the Nuclear Computational Low-Energy Initiative (NUCLEI) SciDAC-4 project (DE-SC0018083) as well as computational resources provided by the Oak Ridge Leadership Computing Facility through the INCITE award “Ab-initio nuclear structure and nuclear reactions”, the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for computing time on the GCS Supercomputer JUWELS at Jülich Supercomputing Centre (JSC), the National Supercomputing Center at the Korea Institute for Science and Technology Information, and the high-performance computing centers at RWTH Aachen University and Michigan State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D. Chiral Effective Field Theory after Thirty Years: Nuclear Lattice Simulations. Few-Body Syst 62, 115 (2021). https://doi.org/10.1007/s00601-021-01701-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-021-01701-5

Navigation