Skip to main content

Advertisement

Log in

Cancer and mortality risks of patients with scoliosis from radiation exposure: a systematic review and meta-analysis

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

The study aimed for unraveling the long-term health impact of cumulative radiation exposure from full-spine radiographs on children/adolescents with scoliosis.

Methods

All cohort, case–control or cross-sectional studies about radiation exposure to scoliosis patients with follow-up period as 20 years or more were included. Meta-analyses were performed for outcomes reported in two or more studies.

Results

A total of 9 eligible studies involving 35,641 participants between 1912 and 1990 fulfilled the inclusion criteria, including 18,873 patients with scoliosis and 16,768 controls as regional matched general population. The average number of full-spine radiographs was 23.13 (range: 0–618) according to 14,512 patients between 1912 and 1990 in five studies. The estimated mean cumulated radiation dose of breast was 11.35 cGy. In comparison with controls, pooled incidence rates of cancer, breast cancer and cancer mortality of patients with scoliosis were statistically significant higher [rate of cancer, odds risk (OR) = 1.46, p < 0.00001; breast cancer, OR = 1.20, p = 0.02; cancer mortality, OR = 1.50, p < 0.00001]. No statistically significant differences were found in terms of reproductive events for scoliosis patients, pulmonary function and physical activity for adolescent idiopathic scoliosis patients.

Conclusions

Based on 35,641 participants with over 20 years’ observations from 1912 to 1990, repeated radiographs and pertaining cumulative radiation dose resulted in elevated rates of cancer, breast cancer and cancer mortality for children/adolescents with scoliosis in comparison with matched general population. It is recommended that low-radiation or radiation-free and efficient methods should be used to monitor the evolution of children/adolescents with scoliosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Reamy BV, Slakey JB (2001) Adolescent idiopathic scoliosis: review and current concepts. Am Fam Phys 64:111–116

    CAS  Google Scholar 

  2. Presciutti SM, Karukanda T, Lee M (2014) Management decisions for adolescent idiopathic scoliosis significantly affect patient radiation exposure. Spine J 14:1984–1990. https://doi.org/10.1016/j.spinee.2013.11.055

    Article  PubMed  Google Scholar 

  3. Hresko MT (2013) Clinical practice. Idiopathic scoliosis in adolescents. N Engl J Med 368:834–841. https://doi.org/10.1056/NEJMcp1209063

    Article  CAS  PubMed  Google Scholar 

  4. Simony A, Hansen EJ, Christensen SB, Carreon LY, Andersen MO (2016) Incidence of cancer in adolescent idiopathic scoliosis patients treated 25 years previously. Eur Spine J 25:3366–3370. https://doi.org/10.1007/s00586-016-4747-2

    Article  PubMed  Google Scholar 

  5. Seung Yeol L, Eungi M, Jaekeon B, Chin Youb C, Kyoung Min L, Soon-Sun K, Moon Seok P, Kisung L (2013) Types and arrangement of thyroid shields to reduce exposure of surgeons to ionizing radiation during intraoperative use of C-arm fluoroscopy. Spine 38:2108–2112

    Article  Google Scholar 

  6. Lee K, Lee KM, Park MS, Lee B, Kwon DG, Chung CY (1976) Measurements of surgeons’ exposure to ionizing radiation dose during intraoperative use of C-arm fluoroscopy. Spine 37:1240–1244

    Article  Google Scholar 

  7. Park MS, Lee KM, Lee B, Min E, Kim Y, Jeon S, Huh Y, Lee K (2012) Comparison of operator radiation exposure between C-arm and O-arm fluoroscopy for orthopaedic surgery. Radiat Prot Dosimetry 148:431–438

    Article  Google Scholar 

  8. Giordano BD, Ryder S, Baumhauer JF, DiGiovanni BF (2007) Exposure to direct and scatter radiation with use of mini-C-arm fluoroscopy. J Bone Joint Surg Am 89:948–952

    Article  Google Scholar 

  9. Hobbs JB, Goldstein N, Lind KE, Elder D, Dodd GD, Borgstede JP (2018) Physician knowledge of radiation exposure and risk in medical imaging. J Am Coll Radiol 15:34–43. https://doi.org/10.1016/j.jacr.2017.08.034

    Article  PubMed  Google Scholar 

  10. Ukkola L, Oikarinen H, Henner A, Haapea M, Tervonen O (2017) Patient information regarding medical radiation exposure is inadequate: patients’ experience in a university hospital. Radiogr (Lond) 23:e114–e119. https://doi.org/10.1016/j.radi.2017.04.001

    Article  CAS  Google Scholar 

  11. Bohl DD, Hijji FY, Massel DH, Mayo BC, Long WW, Modi KD, Narain AS, Manning BT, Ahn J, Louie PK (2017) Patient knowledge regarding radiation exposure from spinal imaging. Spine J 17:305–312

    Article  Google Scholar 

  12. Cohen J (1968) Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychol Bull 70:213–220

    Article  CAS  Google Scholar 

  13. Deeks JJ, Dinnes J, D’Amico R, Sowden AJ, Sakarovitch C, Song F, Petticrew M, Altman DG (2003) Evaluating non-randomised intervention studies. Health Technol Assess (Winch Engl) 7:1–173

    Article  Google Scholar 

  14. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50:1088–1101

    Article  CAS  Google Scholar 

  15. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ (Clin Res Ed) 339:b2535. https://doi.org/10.1136/bmj.b2535

    Article  Google Scholar 

  16. Panic N, Leoncini E, de Belvis G, Ricciardi W, Boccia S (2013) Evaluation of the endorsement of the preferred reporting items for systematic reviews and meta-analysis (PRISMA) statement on the quality of published systematic review and meta-analyses. PLoS ONE 8:e83138. https://doi.org/10.1371/journal.pone.0083138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA 283:2008–2012

    Article  CAS  Google Scholar 

  18. Clarke M, Horton R (2001) Bringing it all together: lancet-cochrane collaborate on systematic reviews. Lancet (Lond Engl) 357:1728. https://doi.org/10.1016/s0140-6736(00)04934-5

    Article  CAS  Google Scholar 

  19. Hai-Qiang Wang YW, Jun Zhang, Fu-Jun Luan, Xin He, Xin Tang, Ping-Heng Lan (2018) Long term impact of radiation exposure on children/adolescents with scoliosis: a systematic review and meta analysis. PROSPERO 2018 CRD42018092830

  20. Diarbakerli E, Grauers A, Danielsson A, Gerdhem P (2017) Adults with idiopathic scoliosis diagnosed at youth experience similar physical activity and fracture rate as controls. Spine 42:E404–E410. https://doi.org/10.1097/brs.0000000000001841

    Article  PubMed  Google Scholar 

  21. Doody MM, Lonstein JE, Stovall M, Hacker DG, Luckyanov N, Land CE (2000) Breast cancer mortality after diagnostic radiography: findings from the U.S. Scoliosis Cohort Study. Spine 25:2052–2063

    Article  CAS  Google Scholar 

  22. Goldberg MS, Mayo NE, Levy AR, Scott SC, PoTras B (1998) Adverse reproductive outcomes among women exposed to low levels of ionizing radiation from diagnostic radiography for adolescent idiopathic scoliosis. Epidemiology 9:271–278

    Article  CAS  Google Scholar 

  23. Hoffman DA, Lonstein JE, Morin MM, Visscher W, Harris BS 3rd, Boice JD Jr (1989) Breast cancer in women with scoliosis exposed to multiple diagnostic X-rays. J Natl Cancer Inst 81:1307–1312

    Article  CAS  Google Scholar 

  24. Ronckers CM, Land CE, Miller JS, Stovall M, Lonstein JE, Doody MM (2010) Cancer mortality among women frequently exposed to radiographic examinations for spinal disorders. Radiat Res 174:83–90. https://doi.org/10.1667/RR2022.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Levy AR, Goldberg MS, Hanley JA, Mayo NE, Poitras B (1994) Projecting the lifetime risk of cancer from exposure to diagnostic ionizing radiation for adolescent idiopathic scoliosis. Health Phys 66:621–633

    Article  CAS  Google Scholar 

  26. Weinstein SL, Dolan LA, Spratt KF, Peterson KK, Spoonamore MJ, Ponseti IV (2003) Health and function of patients with untreated idiopathic scoliosis: a 50-year natural history study. JAMA 289:559–567

    Article  Google Scholar 

  27. Visscher W, Lonstein JE, Hoffman DA, Mandel JS, Harris BS 3rd (1988) Reproductive outcomes in scoliosis patients. Spine 13:1096–1098

    Article  CAS  Google Scholar 

  28. Yoshihara H, Paulino CB (2018) Radiation exposure to the surgeons and patients in fluoroscopic-guided segmental pedicle screw placement for pediatric scoliosis. Spine. https://doi.org/10.1097/brs.0000000000002718

    Article  PubMed  Google Scholar 

  29. Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, Howe NL, Ronckers CM, Rajaraman P, Sir Craft AW, Parker L, Berrington de Gonzalez A (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet (Lond Engl) 380:499–505. https://doi.org/10.1016/S0140-6736(12)60815-0

    Article  Google Scholar 

  30. Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, Giles GG, Wallace AB, Anderson PR, Guiver TA, McGale P, Cain TM, Dowty JG, Bickerstaffe AC, Darby SC (2013) Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ (Clin Res Ed) 346:f2360. https://doi.org/10.1136/bmj.f2360

    Article  Google Scholar 

  31. Cohen S, Liu A, Gurvitz M, Guo L, Therrien J, Laprise C, Kaufman JS, Abrahamowicz M, Marelli AJ (2018) Exposure to low-dose ionizing radiation from cardiac procedures and malignancy risk in adults with congenital heart disease. Circulation 137:1334–1345. https://doi.org/10.1161/CIRCULATIONAHA.117.029138

    Article  PubMed  Google Scholar 

  32. Lang NN, Walker NL (2018) Adult congenital heart disease and radiation exposure: the malignant price of cardiac care. Circulation 137:1346–1348. https://doi.org/10.1161/CIRCULATIONAHA.117.032815

    Article  PubMed  Google Scholar 

  33. Sanchez-Perez I, Jurado-Roman A, Pinilla-Echeverri N, Marina-Breysse M, Lopez-Lluva MT, Gil-Aguado A, Lozano-Ruiz-Poveda F, Garrido JA (2015) Severe consequences of high-dose radiation. Euro Interv 11:935. https://doi.org/10.4244/EIJV11I8A184

    Article  Google Scholar 

  34. Plichta JK, Hughes K (2017) Radiation-induced angiosarcoma after breast-cancer treatment. N Engl J Med 376:367. https://doi.org/10.1056/NEJMicm1516482

    Article  PubMed  Google Scholar 

  35. Ilharreborde B, Ferrero E, Alison M, Mazda K (2016) EOS microdose protocol for the radiological follow-up of adolescent idiopathic scoliosis. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 25:526–531. https://doi.org/10.1007/s00586-015-3960-8

    Article  Google Scholar 

  36. Chang LA, Miller DL, Lee C, Melo DR, Villoing D, Drozdovitch V, Thierry-Chef I, Winters SJ, Labrake M, Myers CF, Lim H, Kitahara CM, Linet MS, Simon SL (2017) Thyroid radiation dose to patients from diagnostic radiology procedures over eight decades: 1930–2010. Health Phys 113:458–473. https://doi.org/10.1097/hp.0000000000000723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gray JE, Hoffman AD, Peterson HA (1983) Reduction of radiation exposure during radiography for scoliosis. J Bone Joint Surg Am 65:5–12

    Article  CAS  Google Scholar 

  38. Ben-Shlomo A, Bartal G, Mosseri M, Avraham B, Leitner Y, Shabat S (2016) Effective dose reduction in spine radiographic imaging by choosing the less radiation-sensitive side of the body. Spine J 16:558–563. https://doi.org/10.1016/j.spinee.2015.12.012

    Article  PubMed  Google Scholar 

  39. Robinson JB, Ali RM, Tootell AK, Hogg P (2017) Does collimation affect patient dose in antero-posterior thoraco-lumbar spine? Radiography 23:211–215. https://doi.org/10.1016/j.radi.2017.03.012

    Article  CAS  PubMed  Google Scholar 

  40. Brink RC, Wijdicks SPJ, Tromp IN, Schlosser TPC, Kruyt MC, Beek FJA, Castelein RM (2017) A reliability and validity study for different coronal angles using ultrasound imaging in adolescent idiopathic scoliosis. Spine J. https://doi.org/10.1016/j.spinee.2017.10.012

    Article  PubMed  Google Scholar 

  41. Sakellariou VI, Atsali E, Starantzis K, Batistaki C, Brozou T, Pantos P, Stathopoulos K, Soultanis K (2011) Postoperative spinal infection mimicking systemic vasculitis with titanium-spinal implants. Scoliosis 6:20. https://doi.org/10.1186/1748-7161-6-20

    Article  PubMed  PubMed Central  Google Scholar 

  42. Juricic M Jr, Pinnagoda K, Lakhal W, Sales De Gauzy J, Abbo O (2017) Pancreatic fracture: a rare complication following scoliosis surgery. Eur Spine J. https://doi.org/10.1007/s00586-017-5318-x

    Article  PubMed  Google Scholar 

  43. Hyun SJ, Han S, Kim KJ, Jahng TA, Kim YJ, Rhim SC, Kim HJ (2017) Adolescent idiopathic scoliosis surgery by a neurosurgeon: learning curve for neurosurgeons. World Neurosurg. https://doi.org/10.1016/j.wneu.2017.10.109

    Article  PubMed  Google Scholar 

  44. Force USPST, Grossman DC, Curry SJ, Owens DK, Barry MJ, Davidson KW, Doubeni CA, Epling JW Jr, Kemper AR, Krist AH, Kurth AE, Landefeld CS, Mangione CM, Phipps MG, Silverstein M, Simon MA, Tseng CW (2018) Screening for adolescent idiopathic scoliosis: US preventive services task force recommendation statement. JAMA 319:165–172. https://doi.org/10.1001/jama.2017.19342

    Article  Google Scholar 

  45. Marshall NW, Faulkner K, Busch HP, Marsh DM, Pfenning H (1994) A comparison of radiation dose in examination of the abdomen using different radiological imaging techniques. Br J Radiol 67:478–484

    Article  CAS  Google Scholar 

  46. Ghearr FANA, Brennan PC (1998) The PA projection of the abdomen: a dose reducing technique. Radiography 4:195–203

    Article  Google Scholar 

  47. Brennan PC, Madigan E (2000) Lumbar spine radiology: analysis of the posteroanterior projection. Eur Radiol 10:1197–1201

    Article  CAS  Google Scholar 

  48. Sharr JRP, Mohammed KD (2003) Optimizing the radiographic technique in clavicular fractures. J Shoulder Elbow Surg 12:170–172

    Article  Google Scholar 

  49. Mc Entee MF, Catherine K (2010) The PA projection of the clavicle: a dose-reducing technique. Radiat Prot Dosimetry 139:539

    Article  CAS  Google Scholar 

  50. Morvan G, Mathieu P, Vuillemin V, Guerini H, Bossard P, Zeitoun F, Wybier M (2011) Standardized way for imaging of the sagittal spinal balance. Eur Spine J 20(Suppl 5):602–608. https://doi.org/10.1007/s00586-011-1927-y

    Article  PubMed  PubMed Central  Google Scholar 

  51. Deschênes S, Charron G, Beaudoin G, Labelle H, Dubois J, Miron M-C, Parent S (2010) Diagnostic imaging of spinal deformities: reducing patients radiation dose with a new slot-scanning X-ray imager. Spine 35:989–994. https://doi.org/10.1097/brs.0b013e3181bdcaa4

    Article  PubMed  Google Scholar 

  52. Dietrich TJ, Pfirrmann CWA, Schwab A, Pankalla K, Buck FM (2013) Comparison of radiation dose, workflow, patient comfort and financial break-even of standard digital radiography and a novel biplanar low-dose X-ray system for upright full-length lower limb and whole spine radiography. Skeletal Radiol 42:959–967. https://doi.org/10.1007/s00256-013-1600-0

    Article  PubMed  Google Scholar 

  53. Ohl X, Stanchina C, Billuart F, Skalli W (2010) Shoulder bony landmarks location using the EOS low-dose stereoradiography system: a reproducibility study. Surg Radiol Anatomy SRA 32:153–158. https://doi.org/10.1007/s00276-009-0566-z

    Article  Google Scholar 

  54. Rosskopf AB, Pfirrmann CWA, Buck FM (2016) Assessment of two-dimensional (2D) and three-dimensional (3D) lower limb measurements in adults: Comparison of micro-dose and low-dose biplanar radiographs. Eur Radiol 26:3054–3062. https://doi.org/10.1007/s00330-015-4166-5

    Article  PubMed  Google Scholar 

  55. Buck FM, Guggenberger R, Koch PP, Pfirrmann CWA (2012) Femoral and tibial torsion measurements with 3D models based on low-dose biplanar radiographs in comparison with standard CT measurements. AJR Am J Roentgenol 199:W607–W612. https://doi.org/10.2214/AJR.11.8295

    Article  PubMed  Google Scholar 

  56. Rosskopf AB, Ramseier LE, Sutter R, Pfirrmann CWA, Buck FM (2014) Femoral and tibial torsion measurement in children and adolescents: comparison of 3D models based on low-dose biplanar radiography and low-dose CT. AJR Am J Roentgenol 202:W285–W291. https://doi.org/10.2214/AJR.13.11103

    Article  PubMed  Google Scholar 

  57. Tabard-Fougere A, Bonnefoy-Mazure A, Hanquinet S, Lascombes P, Armand S, Dayer R (2017) Validity and reliability of spine rasterstereography in patients with adolescent idiopathic scoliosis. Spine 42:98–105. https://doi.org/10.1097/brs.0000000000001679

    Article  PubMed  Google Scholar 

  58. Zheng YP, Lee TT, Lai KK, Yip BH, Zhou GQ, Jiang WW, Cheung JC, Wong MS, Ng BK, Cheng JC, Lam TP (2016) A reliability and validity study for Scolioscan: a radiation-free scoliosis assessment system using 3D ultrasound imaging. Scoliosis Spinal Disord 11:13. https://doi.org/10.1186/s13013-016-0074-y

    Article  PubMed  PubMed Central  Google Scholar 

  59. Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A, Sallis JF, Oja P (2003) International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 35:1381–1395. https://doi.org/10.1249/01.MSS.0000078924.61453.FB

    Article  PubMed  Google Scholar 

  60. Tobias JH, Fairbank J, Harding I, Taylor HJ, Clark EM (2018) Association between physical activity and scoliosis: a prospective cohort study. Int J Epidemiol 4:1152–1160. https://doi.org/10.1093/ije/dyy268

    Article  Google Scholar 

Download references

Funding

The study was supported by National Natural Science Foundation of China (No. 81572182) and Foundation of Yongchuan Hospital of Chongqing Medical university (No. YJLC201716).

Author information

Authors and Affiliations

Authors

Contributions

H-QW and F-JL designed the study concept. F-JL, YW and H-QW acquired, analyzed and interpreted the data. F-JL and H-QW drafted manuscript. All authors critically revised the manuscript for important intellectual content. YW made the statistical analysis. H-QW and F-JL obtained funding. H-QW supervised the study.

Corresponding author

Correspondence to Hai-Qiang Wang.

Ethics declarations

Conflict of interest

The authors have declared no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, FJ., Wan, Y., Mak, KC. et al. Cancer and mortality risks of patients with scoliosis from radiation exposure: a systematic review and meta-analysis. Eur Spine J 29, 3123–3134 (2020). https://doi.org/10.1007/s00586-020-06573-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-020-06573-7

Keywords

Navigation