Skip to main content

Advertisement

Log in

Comparison of radiation dose, workflow, patient comfort and financial break-even of standard digital radiography and a novel biplanar low-dose X-ray system for upright full-length lower limb and whole spine radiography

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To compare the radiation dose, workflow, patient comfort, and financial break-even of a standard digital radiography and a biplanar low-dose X-ray system.

Materials and methods

A standard digital radiography system (Ysio, Siemens Healthcare, Erlangen, Germany) was compared with a biplanar X-ray unit (EOS, EOS imaging, Paris, France) consisting of two X-ray tubes and slot-scanning detectors, arranged at an angle of 90° allowing simultaneous vertical biplanar linear scanning in the upright patient position. We compared data of standing full-length lower limb radiographs and whole spine radiographs of both X-ray systems.

Results

Dose–area product was significantly lower for radiographs of the biplanar X-ray system than for the standard digital radiography system (e.g. whole spine radiographs; standard digital radiography system: 392.2 ± 231.7 cGy*cm2 versus biplanar X-ray system: 158.4 ± 103.8 cGy*cm2). The mean examination time was significantly shorter for biplanar radiographs compared with standard digital radiographs (e.g. whole spine radiographs: 449 s vs 248 s). Patients’ comfort regarding noise was significantly higher for the standard digital radiography system. The financial break-even point was 2,602 radiographs/year for the standard digital radiography system compared with 4,077 radiographs/year for the biplanar X-ray unit.

Conclusion

The biplanar X-ray unit reduces radiation exposure and increases subjective noise exposure to patients. The biplanar X-ray unit demands a higher number of examinations per year for the financial break-even point, despite the lower labour cost per examination due to the shorter examination time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dumas R, Aissaoui R, Mitton D, Skalli W, de Guise JA. Personalized body segment parameters from biplanar low-dose radiography. IEEE Trans Biomed Eng. 2005;52:1756–63.

    Article  PubMed  Google Scholar 

  2. Dubousset J, Charpak G, Dorion I, et al. A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system. Bull Acad Natl Med. 2005;189:287–300.

    PubMed  Google Scholar 

  3. Illés T, Tunyogi-Csapó M, Somoskeöy S. Breakthrough in three-dimensional scoliosis diagnosis: significance of horizontal plane view and vertebra vectors. Eur Spine J. 2011;20:135–43.

    Article  PubMed  Google Scholar 

  4. Labelle H, Aubin CE, Jackson R, Lenke L, Newton P, Parent S. Seeing the spine in 3D: how will it change what we do? J Pediatr Orthop. 2011;31:S37–45.

    Article  PubMed  Google Scholar 

  5. Després P, Beaudoin G, Gravel P, de Guise JA. Physical characteristics of a low-dose gas microstrip detector for orthopedic x-ray imaging. Med Phys. 2005;32:1193–204.

    Article  PubMed  Google Scholar 

  6. Deschênes S, Charron G, Beaudoin G, et al. Diagnostic imaging of spinal deformities: reducing patients radiation dose with a new slot-scanning X-ray imager. Spine. 2010;35:989–94.

    Article  PubMed  Google Scholar 

  7. Parry CK, Chu RY, Eaton BG, Chen CY. Measurement of skin entrance exposure with a dose-area-product meter at chest radiography. Radiology. 1996;201:574–5.

    PubMed  CAS  Google Scholar 

  8. Uebersax JS. Likert scales: dispelling the confusion. Statistical Methods for Rater Agreement website. 2006. Available via http://john-uebersax.com/stat/likert.htm. Accessed 6 November 2012.

  9. Illers H, Buhr E, Hoeschen C. Measurement of the detective quantum efficiency (DQE) of digital X-ray detectors according to the novel standard IEC 62220–1. Radiat Prot Dosim. 2005;114:39–44.

    Article  Google Scholar 

  10. Korner M, Weber CH, Wirth S, Pfeifer KJ, Reiser MF, Treitl M. Advances in digital radiography: physical principles and system overview. Radiographics. 2007;27:675–86.

    Article  PubMed  Google Scholar 

  11. Martin CJ. Radiation dosimetry for diagnostic medical exposures. Radiat Prot Dosim. 2008;128:389–412.

    Article  CAS  Google Scholar 

  12. Svane G, Azavedo E, Lindman K, et al. Clinical experience of photon counting breast tomosynthesis: comparison with traditional mammography. Acta Radiol. 2011;52:134–42.

    Article  PubMed  Google Scholar 

  13. Liedenbaum MH, Denters MJ, de Vries AH, et al. Low-fiber diet in limited bowel preparation for CT colonography: influence on image quality and patient acceptance. Am J Roentgenol. 2010;195:W31–7.

    Article  Google Scholar 

  14. Gonçalves A, Wiezel VG, Gonçalves M, Hebling J, Sannomiya EK. Patient comfort in periapical examination using digital receptors. Dentomaxillofac Radiol. 2009;38:484–8.

    Article  PubMed  Google Scholar 

  15. Winter L, Glücker T, Steimann S, et al. Feasibility of dynamic MR-hysterosalpingography for the diagnostic work-up of infertile women. Acta Radiol. 2010;51:693–701.

    Article  PubMed  Google Scholar 

  16. Berná-Mestre JD, Berná-Serna JD, Aparicio-Mesón M, Canteras-Jordana M. Urethrography in men: conventional technique versus clamp method. Radiology. 2009;252:240–6.

    Article  PubMed  Google Scholar 

  17. McKenna C, Wade R, Faria R, et al. EOS 2D/3D X-ray imaging system: a systematic review and economic evaluation. Health Technol Assess. 2012;16:1–188.

    CAS  Google Scholar 

  18. Morvan G, Mathieu P, Vuillemin V, et al. Standardized way for imaging of the sagittal spinal balance. Eur Spine J. 2011;20:602–8.

    Article  PubMed  Google Scholar 

  19. Than P, Szuper K, Somoskeöy S, Warta V, Illés T. Geometrical values of the normal and arthritic hip and knee detected with the EOS imaging system. Int Orthop. 2012;36:1291–7.

    Article  PubMed  Google Scholar 

  20. Sabourin M, Jolivet E, Miladi L, Wicart P, Rampal V, Skalli W. Three-dimensional stereoradiographic modeling of rib cage before and after spinal growing rod procedures in early-onset scoliosis. Clin Biomech. 2010;25:284–91.

    Article  Google Scholar 

  21. Ohl X, Stanchina C, Billuart F, Skalli W. Shoulder bony landmarks location using the EOS® low-dose stereoradiography system: a reproducibility study. Surg Radiol Anat. 2009;32:153–8.

    Article  PubMed  Google Scholar 

  22. Schlatterer B, Suedhoff I, Bonnet X, Catonne Y, Maestro M, Skalli W. Skeletal landmarks for TKR implantations: evaluation of their accuracy using EOS imaging acquisition system. Orthop Traumatol Surg Res. 2009;95:2–11.

    Article  PubMed  CAS  Google Scholar 

  23. Lazennec JY, Rousseau MA, Rangel A, et al. Pelvis and total hip arthroplasty acetabular component orientations in sitting and standing positions: measurements reproducibility with EOS imaging system versus conventional radiographies. Orthop Traumatol Surg Res. 2011;97:373–80.

    Article  PubMed  CAS  Google Scholar 

  24. Buck FM, Guggenberger R, Koch PP, Pfirrmann CW. Femoral and tibial torsion measurements with 3D models based on low-dose biplanar radiographs in comparison with standard CT measurements. Am J Roentgenol. 2012;199:W607–12.

    Article  Google Scholar 

  25. Thelen P, Delin C, Folinais D, Radier C. Evaluation of a new low-dose biplanar system to assess lower-limb alignment in 3D: a phantom study. Skeletal Radiol. 2012;41:1287–93.

    Article  PubMed  Google Scholar 

  26. Sutter R, Pfirrmann CW, Espinosa N, Buck FM. Three-dimensional hindfoot alignment measurements based on biplanar radiographs: comparison with standard radiographic measurements. Skeletal Radiol. 2013;42:493–98. .

    Article  PubMed  Google Scholar 

Download references

Conflict of interests

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias J. Dietrich.

Electronic supplementary material

ESM 1

(PDF 198 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietrich, T.J., Pfirrmann, C.W.A., Schwab, A. et al. Comparison of radiation dose, workflow, patient comfort and financial break-even of standard digital radiography and a novel biplanar low-dose X-ray system for upright full-length lower limb and whole spine radiography. Skeletal Radiol 42, 959–967 (2013). https://doi.org/10.1007/s00256-013-1600-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-013-1600-0

Keywords

Navigation