Skip to main content
Log in

Shoulder bony landmarks location using the EOS® low-dose stereoradiography system: a reproducibility study

  • Anatomic Bases of Medical, Radiological and Surgical Techniques
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Purpose

To investigate the reproducibility of shoulder bony landmarks location using the EOS® low-dose stereoradiography system, in order to validate this new tool for the study of gleno-humeral pseudo-kinematics.

Methods

An inter and intraobserver reproducibility study of shoulder bony landmarks location concerning 22 healthy volunteers. This study concerned the neutral position, arm at rest. Humerus and scapula were modeled with simple geometric shapes using specific software. Those shapes were positioned on A-P and lateral x-rays views. Images analysis of the 22 subjects was carried out three times (n r = 3), by two observers (n o = 2), for a total of n tot = 132 analyses.

Results

We obtained a very good reproducibility for the humeral head center and the diaphysis axis with 95% confidence interval (IC95%) inferior to 1.09 mm and 0.41°, respectively. The uncertainty was higher for the lateral and medial epicondyles. Regarding the scapular bony landmarks, we observed a good reproducibility for the tip of the coracoid process, the inferior glenoid rim, and the axillar border with a 95% confidence interval lower than 2.13, 2.91 mm, and 3.67°, respectively. The uncertainty was higher for the most postero-lateral point of the acromion and the superior glenoid rim.

Conclusion

Our analysis of the x-rays obtained with the EOS® low-dose stereoradiography system assessed the location reliability and reproducibility of specific scapular and humeral bony landmarks. This work opens the way to gleno-humeral pseudo-kinematics analysis using EOS® imaging system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The EOS® imaging system results from a collaboration between LBM (Paris), LIO (Montreal), Saint-Vincent de Paul Hospital (Paris) and Biospace Instruments (Paris).

References

  1. Barnett ND, Duncan RDD, Johnson GR (1999) The measurement of three dimensional scapulohumeral kinematics—a study of reliability. Clin Biomech 14:287–290

    Article  CAS  Google Scholar 

  2. Berthonnaud E, Herzberg G, Zhao KD, An KN, Dimnet J (2005) Three-dimensional in vivo displacements of the shoulder complex from biplanar radiography. Surg Radiol Anat 27:214–222

    Article  CAS  PubMed  Google Scholar 

  3. Bey MJ, Zauel R, Brock SK, Tashman S (2006) Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics. J Biomech Eng 128:604–609

    Article  PubMed  Google Scholar 

  4. Della Croce U, Leardini A, Chiari L, Cappozzo A (2005) Human movement analysis using stereophotogrammetry. Part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait Posture 21:226–237

    Article  PubMed  Google Scholar 

  5. Dubousset J, Charpak G, Dorion I, Skalli W, Lavaste F, Deguise J, Kalifa G et al (2005) A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system. Bull Acad Natl Med 189:287–297 discussion 297-300

    PubMed  Google Scholar 

  6. Gluer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5:262–270

    Article  CAS  PubMed  Google Scholar 

  7. Graichen H, Stammberger T, Bonel H, Karl-Hans E, Reiser M, Eckstein F (2000) Glenohumeral translation during active and passive elevation of the shoulder—a 3D open-MRI study. J Biomech 33:609–613

    Article  CAS  PubMed  Google Scholar 

  8. Kalifa G, Charpak Y, Maccia C, Fery-Lemonnier E, Bloch J, Boussard JM, Attal M et al (1998) Evaluation of a new low-dose digital x-ray device: first dosimetric and clinical results in children. Pediatr Radiol 28:557–561

    Article  CAS  PubMed  Google Scholar 

  9. Karduna AR, McClure PW, Michener LA, Sennett B (2001) Dynamic measurements of three-dimensional scapular kinematics: a validation study. J Biomech Eng 123:184–190

    Article  CAS  PubMed  Google Scholar 

  10. Lewis J, Green A, Reichard Z, Wright C (2002) Scapular position: the validity of skin surface palpation. Man Ther 7:26–30

    Article  CAS  PubMed  Google Scholar 

  11. Mahfouz M, Nicholson G, Komistek R, Hovis D, Kubo M (2005) In vivo determination of the dynamics of normal, rotator cuff-deficient, total, and reverse replacement shoulders. J Bone Joint Surg Am 87(Suppl 2):107–113

    Article  PubMed  Google Scholar 

  12. Mandalidis DG, Mc Glone BS, Quigley RF, McInerney D, O’Brien M (1999) Digital fluoroscopic assessment of the scapulohumeral rhythm. Surg Radiol Anat 21:241–246

    CAS  PubMed  Google Scholar 

  13. Meskers CG, van der Helm FC, Rozendaal LA, Rozing PM (1998) In vivo estimation of the glenohumeral joint rotation center from scapular bony landmarks by linear regression. J Biomech 31:93–96

    Article  CAS  PubMed  Google Scholar 

  14. Meskers CGM, Vermeulen HM, de Groot JH, van der Helm FCT, Rozing PM (1998) 3D shoulder position measurements using a six-degree-of-freedom electromagnetic tracking device. Clin Biomech 13:280–292

    Article  Google Scholar 

  15. Paletta GA Jr, Warner JJ, Warren RF, Deutsch A, Altchek DW (1997) Shoulder kinematics with two-plane x-ray evaluation in patients with anterior instability or rotator cuff tearing. J Shoulder Elbow Surg 6:516–527

    Article  PubMed  Google Scholar 

  16. Rousseau MA, Laporte S, Chavary-Bernier E, Lazennec JY, Skalli W (2007) Reproducibility of measuring the shape and three-dimensional position of cervical vertebrae in upright position using the EOS stereoradiography system. Spine 32:2569–2572

    Article  PubMed  Google Scholar 

  17. Sahara W, Sugamoto K, Murai M, Tanaka H, Yoshikawa H (2007) The three-dimensional motions of glenohumeral joint under semi-loaded condition during arm abduction using vertically open MRI. Clin Biomech 22:304–312

    Article  Google Scholar 

  18. Salvia P, Jan SV, Crouan A, Vanderkerken L, Moiseev F, Sholukha V, Mahieu C et al (2009) Precision of shoulder anatomical landmark calibration by two approaches: a CAST-like protocol and a new anatomical palpator method. Gait Posture 29(4):587–591

    Article  CAS  PubMed  Google Scholar 

  19. Sholukha V, Van Sint Jan S, Snoeck O, Salvia P, Moiseev F, Rooze M (2009) Prediction of joint center location by customizable multiple regressions: application to clavicle, scapula and humerus. J Biomech 42:319–324

    Article  CAS  PubMed  Google Scholar 

  20. Sint Jan SV, Croce UD (2005) Letter to the editor. Clin Biomech 20:659–660

    Article  Google Scholar 

  21. Van Andel C, Van Hutten K, Eversdijk M, Veeger D, Harlaar J (2009) Recording scapular motion using an acromion marker cluster. Gait Posture 29:123–128

    Article  PubMed  Google Scholar 

  22. Wu G, van der Helm FC, Veeger HE, Makhsous M, Van Roy P, Anglin C, Nagels J et al (2005) ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. J Biomech 38:981–992

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Ohl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohl, X., Stanchina, C., Billuart, F. et al. Shoulder bony landmarks location using the EOS® low-dose stereoradiography system: a reproducibility study. Surg Radiol Anat 32, 153–158 (2010). https://doi.org/10.1007/s00276-009-0566-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-009-0566-z

Keywords

Navigation