Skip to main content

Advertisement

Log in

Scaffolding in tissue engineering: general approaches and tissue-specific considerations

  • Review
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Scaffolds represent important components for tissue engineering. However, researchers often encounter an enormous variety of choices when selecting scaffolds for tissue engineering. This paper aims to review the functions of scaffolds and the major scaffolding approaches as important guidelines for selecting scaffolds and discuss the tissue-specific considerations for scaffolding, using intervertebral disc as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine 31(18):2151–2161

    Article  PubMed  Google Scholar 

  2. Alini M, Li W, Markovic P, Aebi M, Spiro RC, Roughley PJ (2003) The potential and limitations of a cell-seeded collagen/hyaluronan scaffold to engineer an intervertebral disc-like matrix. Spine 28(5):446–454

    Article  PubMed  Google Scholar 

  3. Alini M, Roughley PJ, Antoniou J, Stoll T, Aebi M (2002) A biological approach to treating disc degeneration: not for today, but maybe for tomorrow. Eur Spine J 11(Suppl 2):S215–S220

    PubMed  Google Scholar 

  4. Allan KS, Pilliar RM, Wang J, Grynpas MD, Kandel RA (2007) Formation of biphasic constructs containing cartilage with a calcified zone interface. Tissue Eng 13(1):167–177

    Article  PubMed  CAS  Google Scholar 

  5. Allers C, Sierralta WD, Neubauer S, Rivera F, Minguell JJ, Conget PA (2004) Dynamic of distribution of human bone marrow-derived mesenchymal stem cells after transplantation into adult unconditioned mice. Transplantation 78(4):503–508

    Article  PubMed  Google Scholar 

  6. Anderson DG, Risbud MV, Shapiro IM, Vaccaro AR, Albert TJ (2005) Cell-based therapy for disc repair. Spine J 5(6 Suppl):297S–303S

    Article  PubMed  Google Scholar 

  7. Ansaloni L, Cambrini P, Catena F, Di Saverio S, Gagliardi S, Gazzotti F, Hodde JP, Metzger DW, D’Alessandro L, Pinna AD (2007) Immune response to small intestinal submucosa (surgisis) implant in humans: preliminary observations. J Invest Surg 20(4):237–241

    Article  PubMed  Google Scholar 

  8. Ansaloni L, Catena F, Gagliardi S, Gazzotti F, D’Alessandro L, Pinna AD (2007) Hernia repair with porcine small-intestinal submucosa. Hernia 11(4):321–326

    Article  PubMed  CAS  Google Scholar 

  9. Badylak SF (2004) Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol 12(3–4):367–377

    Article  PubMed  CAS  Google Scholar 

  10. Batorsky A, Liao J, Lund AW, Plopper GE, Stegemann JP (2005) Encapsulation of adult human mesenchymal stem cells within collagen-agarose microenvironments. Biotechnol Bioeng 92(4):492–500

    Article  PubMed  CAS  Google Scholar 

  11. Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57(1):19–34

    Article  PubMed  CAS  Google Scholar 

  12. Bibby SR, Jones DA, Lee RB, Yu J, Urban JPG (2001) The pathophysiology of the intervertebral disc. Joint Bone Spine 68(6):537–542

    Article  PubMed  CAS  Google Scholar 

  13. Bissell DM, Choun MO (1988) The role of extracellular matrix in normal liver. Scand J Gastroenterol Suppl 151:1–7

    Article  PubMed  CAS  Google Scholar 

  14. Boccaccini AR, Blaker JJ (2005) Bioactive composite materials for tissue engineering scaffolds. Expert Rev Med Devices 2(3):303–317

    Article  PubMed  CAS  Google Scholar 

  15. Borschel GH, Huang YC, Calve S, Arruda EM, Lynch JB, Dow DE, Kuzon WM, Dennis RG, Brown DL (2005) Tissue engineering of recellularized small-diameter vascular grafts. Tissue Eng 11(5–6):778–786

    Article  PubMed  CAS  Google Scholar 

  16. Brodie JC, Goldie E, Connel G, Merry J, Grant MH (2005) Osteoblast interactions with calcium phosphate ceramics modified by coating with type I collagen. J Biomed Mater Res A 73(4):409–421

    PubMed  CAS  Google Scholar 

  17. Broom ND, Poole CA (1982) A functional-morphological study of the tidemark region of articular cartilage maintained in a non-viable physiological condition. J Anat 135(Pt 1):65–82

    PubMed  CAS  Google Scholar 

  18. Chai C, Leong KW (2007) Biomaterials approach to expand and direct differentiation of stem cells. Mol Ther 15(3):467–480

    Article  PubMed  CAS  Google Scholar 

  19. Chan BP, Chan GCF, Wong HL, Cheung PT, Chan D, Cheah K (2007b) Cell–Matrix Microsphere, Associated Products, Methods for Preparation and Applications. Regular Patent Application No. 60/801,975 (filed on 19 May 2007)

  20. Chan BP, Hui TY, Chan OC, So KF, Lu W, Cheung KM, Salomatina E, Yaroslavsky A (2007) Photochemical cross-linking for collagen-based scaffolds: a study on optical properties, mechanical properties, stability, and hematocompatibility. Tissue Eng 13(1):73–85

    Article  PubMed  CAS  Google Scholar 

  21. Chan BP, Hui TY, Yeung CW, Li J, Mo I, Chan GCF (2007) Self-assembled collagen–human mesenchymal stem cell microspheres for regenerative medicine. Biomaterials 28:4652–4666

    Article  PubMed  CAS  Google Scholar 

  22. Chan BP, So K-F (2005) Photochemical crosslinking improves the physicochemical properties of collagen scaffolds. J Biomed Mater Res A 75(3):689–701

    PubMed  CAS  Google Scholar 

  23. Chang G, Kim HJ, Kaplan D, Vunjak-Novakovic G, Kandel RA (2007) Porous silk scaffolds can be used for tissue engineering annulus fibrosus. Eur Spine J 16(11):1848–1857

    Article  PubMed  CAS  Google Scholar 

  24. Chang TM (1992) Hybrid artificial cells: microencapsulation of living cells. ASAIO J 38(2):128–130

    Article  PubMed  CAS  Google Scholar 

  25. Chevalier E, Chulia D, Pouget C, Viana M (2008) Fabrication of porous substrates: a review of processes using pore forming agents in the biomaterial field. J Pharm Sci 97(3):1135–1154

    Article  PubMed  CAS  Google Scholar 

  26. Chew SY, Mi R, Hoke A, Leong KW (2008) The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials 29(6):653–661

    PubMed  CAS  Google Scholar 

  27. Chew SY, Wen Y, Dzenis Y, Leong KW (2006) The role of electrospinning in the emerging field of nanomedicine. Curr Pharm Des 12(36):4751–4770

    Article  PubMed  CAS  Google Scholar 

  28. Cloyd JM, Malhotra NR, Weng L, Chen W, Mauck RL, Elliott DM (2007) Material properties in unconfined compression of human nucleus pulposus, injectable hyaluronic acid-based hydrogels and tissue engineering scaffolds. Eur Spine J 16(11):1892–1898

    Article  PubMed  Google Scholar 

  29. Coric D, Mummaneni PV (2008) Nucleus replacement technologies. J Neurosurg Spine 8(2):115–120

    Article  PubMed  Google Scholar 

  30. Crevensten G, Walsh AJ, Ananthakrishnan D, Page P, Wahba GM, Lotz JC, Berven S (2004) Intervertebral disc cell therapy for regeneration: mesenchymal stem cell implantation in rat intervertebral discs. Ann Biomed Eng 32(3):430–434

    Article  PubMed  Google Scholar 

  31. da Silva RM, Mano JF, Reis RL (2007) Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries. Trends Biotechnol 25(12):577–583

    Article  PubMed  CAS  Google Scholar 

  32. Dang JM, Leong KW (2007) Myogenic induction of aligned mesenchymal stem cell sheets by culture on thermally responsive electrospun nanofibers. Adv Mater 19(19):2775–2779

    Article  CAS  PubMed  Google Scholar 

  33. Dang JM, Sun DD, Shin-Ya Y, Sieber AN, Kostuik JP, Leong KW (2006) Temperature-responsive hydroxybutyl chitosan for the culture of mesenchymal stem cells and intervertebral disk cells. Biomaterials 27(3):406–418

    Article  PubMed  CAS  Google Scholar 

  34. Dhariwala B, Hunt E, Boland T (2004) Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng 10(9–10):1316–1322

    PubMed  CAS  Google Scholar 

  35. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143

    Article  PubMed  CAS  Google Scholar 

  36. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  PubMed  CAS  Google Scholar 

  37. Evans C (2006) Potential biologic therapies for the intervertebral disc. J Bone Joint Surg Am 88(Suppl 2):95–98

    Article  PubMed  Google Scholar 

  38. Fiala R, Vidlar A, Vrtal R, Belej K, Student V (2007) Porcine small intestinal submucosa graft for repair of anterior urethral strictures. Eur Urol 51(6):1702–1708 discussion 1708

    Article  PubMed  Google Scholar 

  39. Gazit E (2007) Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 36:1263–1269

    Article  PubMed  CAS  Google Scholar 

  40. Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27(19):3675–3683

    PubMed  CAS  Google Scholar 

  41. Gray DW (2001) An overview of the immune system with specific reference to membrane encapsulation and islet transplantation. Ann N Y Acad Sci 944:226–239

    Article  PubMed  CAS  Google Scholar 

  42. Grohn P, Klock G, Zimmermann U (1997) Collagen-coated Ba(2+)-alginate microcarriers for the culture of anchorage-dependent mammalian cells. Biotechniques 22(5):970–975

    PubMed  CAS  Google Scholar 

  43. Gruber HE, Hanley EN Jr (2003) Biologic strategies for the therapy of intervertebral disc degeneration. Expert Opin Biol Ther 3(8):1209–1214

    Article  PubMed  CAS  Google Scholar 

  44. Hall S (1997) Axonal regeneration through acellular muscle grafts. J Anat 190(1):57–71

    Article  PubMed  Google Scholar 

  45. Halloran DO, Grad S, Stoddart M, Dockery P, Alini M, Pandit AS (2008) An injectable cross-linked scaffold for nucleus pulposus regeneration. Biomaterials 29(4):438–447

    Article  PubMed  CAS  Google Scholar 

  46. Hamilton DJ, Séguin CA, Wang J, Pilliar RM, Kandel RA (2006) Bioengineering of skeletal tissues team: formation of a nucleus pulposus-cartilage endplate construct in vitro. Biomaterials 27(3):397–405

    Article  PubMed  CAS  Google Scholar 

  47. Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24(24):4385–4415

    Article  PubMed  CAS  Google Scholar 

  48. Ho G, Leung VY, Cheung KM, Chan D (2008) Effect of severity of intervertebral disc injury on mesenchymal stem cell-based regeneration. Connect Tissue Res 49(1):15–21

    Article  PubMed  Google Scholar 

  49. Hodde J (2006) Extracellular matrix as a bioactive material for soft tissue reconstruction. ANZ J Surg 76(12):1096–1100

    Article  PubMed  Google Scholar 

  50. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4(7):518–524

    Article  PubMed  CAS  Google Scholar 

  51. Hubbell JA (1995) Biomaterials in tissue engineering. Biotechnology (N Y) 13(6):565–576

    Article  CAS  Google Scholar 

  52. Hui TY, Cheung KMC, Cheung WL, Chan D, Chan BP (2008) In vitro chondrogenic differentiation of human mesenchymal stem cells in collagen microspheres: influence of cell seeding density and collagen concentration. Biomaterials 29:3201–3212

    Article  PubMed  CAS  Google Scholar 

  53. Humes HD (2005) Stem cells: the next therapeutic frontier. Trans Am Clin Climatol Assoc 116:167–183

    PubMed  Google Scholar 

  54. Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22(7):354–362

    Article  PubMed  CAS  Google Scholar 

  55. Ifkovits JL, Burdick JA (2007) Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng 13(10):2369–2385

    Article  PubMed  CAS  Google Scholar 

  56. Ingram JH, Korossis S, Howling G, Fisher J, Ingham E (2007) The use of ultrasonication to aid recellularization of acellular natural tissue scaffolds for use in anterior cruciate ligament reconstruction. Tissue Eng 13(7):1561–1572

    Article  PubMed  CAS  Google Scholar 

  57. Isenberg BC, Tsuda Y, Williams C, Shimizu T, Yamato M, Okano T, Wong JY (2008) A thermoresponsive, microtextured substrate for cell sheet engineering with defined structural organization. Biomaterials 29(17):2565–2572

    Article  PubMed  CAS  Google Scholar 

  58. Iwata H, Amemiya H, Hayashi R, Fujii S, Akutsu T (1990) The use of photocrosslinkable polyvinyl alcohol in the immunoisolation of pancreatic islets. Transplant Proc 22(2):797–799

    PubMed  CAS  Google Scholar 

  59. Karp JM, Langer R (2007) Development and therapeutic applications of advanced biomaterials. Curr Opin Biotechnol 18(5):454–459

    PubMed  CAS  Google Scholar 

  60. Katsuura A, Hukuda S (1994) Experimental study of intervertebral disc allografting in the dog. Spine 19(21):2426–2432

    Article  PubMed  CAS  Google Scholar 

  61. Kim BS, Baez CE, Atala A (2000) Biomaterials for tissue engineering. World J Urol 18(1):2–9

    Article  PubMed  CAS  Google Scholar 

  62. Knight RL, Wilcox HE, Korossis SA, Fisher J, Ingham E (2008) The use of acellular matrices for the tissue engineering of cardiac valves. Proc Inst Mech Eng [H] 222(1):129–143

    CAS  Google Scholar 

  63. Kurella A, Dahotre NB (2005) Review paper: surface modification for bioimplants: the role of laser surface engineering. J Biomater Appl 20(1):5–50

    Article  PubMed  Google Scholar 

  64. Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428(6982):487–492

    Article  PubMed  CAS  Google Scholar 

  65. Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    Article  PubMed  CAS  Google Scholar 

  66. Lanza RP, Hayes JL, Chick WL (1996) Encapsulated cell technology. Nat Biotechnol 14(9):1107–1111

    Article  PubMed  CAS  Google Scholar 

  67. Le Visage C, Kim SW, Tateno K, Sieber AN, Kostuik JP, Leong KW (2006) Interaction of human mesenchymal stem cells with disc cells: changes in extracellular matrix biosynthesis. Spine 31(18):2036–2042

    Article  PubMed  Google Scholar 

  68. Le Visage C, Yang SH, Kadakia L, Sieber AN, Kostuik JP, Leong KW (2006) Small intestinal submucosa as a potential bioscaffold for intervertebral disc regeneration. Spine 31(21):2423–2430

    Article  PubMed  Google Scholar 

  69. Le Visage K, Dang JM, Chan BP, Serhan H, Sieber AN, Kostuik JP, Leong KW (2008) Biomaterials development for disc degeneration: a pilot study of small intestinal submucosa for nucleus pulposus augmentation in a non-human primate model. World Forum for Spine Research—the intervertebral disc. First Japanese Meeting, 23–26 January 2008, The Westin Miyako Kyoto, Kyoto, Japan

  70. Leone G, Torricelli P, Chiumiento A, Facchini A, Barbucci R (2008) Amidic alginate hydrogel for nucleus pulposus replacement. J Biomed Mater Res A 84(2):391–401

    PubMed  Google Scholar 

  71. Luk KD, Ruan DK, Chow DH, Leong JC (1997) Intervertebral disc autografting in a bipedal animal model. Clin Orthop Relat Res 337:13–26

    Article  PubMed  Google Scholar 

  72. Luk KD, Ruan DK, Lu DS, Fei ZQ (2003) Fresh frozen intervertebral disc allografting in a bipedal animal model. Spine 28(9):864–869

    Article  PubMed  Google Scholar 

  73. Lumpkins SB, Pierre N, McFetridge PS (2008) A mechanical evaluation of three decellularization methods in the design of a xenogeneic scaffold for tissue engineering the temporomandibular joint disc. Acta Biomater 4(4):808–816

    Article  PubMed  Google Scholar 

  74. Masuda K, An HS (2006) Prevention of disc degeneration with growth factors. Eur Spine J 15(Suppl 3):S422–S432

    Article  PubMed  Google Scholar 

  75. Matsuzaki H, Wakabayashi K, Ishihara K, Ishikawa H, Ohkawa A (1996) Allografting intervertebral discs in dogs: a possible clinical application. Spine 21(2):178–183

    Article  PubMed  CAS  Google Scholar 

  76. Mizuno H, Roy AK, Vacanti CA, Kojima K, Ueda M, Bonassar LJ (2004) Tissue-engineered composites of anulus fibrosus and nucleus pulposus for intervertebral disc replacement. Spine 29(12):1290–1297

    Article  PubMed  Google Scholar 

  77. Mligiliche N, Endo K, Okamoto K, Fujimoto E, Ide C (2002) Extracellular matrix of human amnion manufactured into tubes as conduits for peripheral nerve regeneration. J Biomed Mater Res 63(5):591–600

    Article  PubMed  CAS  Google Scholar 

  78. Morra M, Cassinelli C (2006) Biomaterials surface characterization and modification. Int J Artif Organs 29(9):824–833

    PubMed  CAS  Google Scholar 

  79. Muschler GF, Nakamoto C, Griffith LG (2004) Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am 86-A(7):1541–1558

    PubMed  Google Scholar 

  80. Nerurkar NL, Elliott DM, Mauck RL (2007) Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering. J Orthop Res 25(8):1018–1028

    Article  PubMed  CAS  Google Scholar 

  81. Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23(22):4307–4314

    Article  PubMed  CAS  Google Scholar 

  82. Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, Nagai S, Kikuchi A, Maeda N, Watanabe H, Okano T, Tano Y (2004) Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 351(12):1187–1196

    Article  PubMed  CAS  Google Scholar 

  83. Nuttelman CR, Tripodi MC, Anseth KS (2005) Synthetic hydrogel niches that promote hMSC viability. Matrix Biol 24(3):208–218

    Article  PubMed  CAS  Google Scholar 

  84. Okano T, Yamada N, Okuhara M, Sakai H, Sakurai Y (1995) Mechanism of cell detachment from temperature-modulated, hydrophilic–hydrophobic polymer surfaces. Biomaterials 16(4):297–303

    Article  PubMed  CAS  Google Scholar 

  85. Okano T, Yamada N, Sakai H, Sakurai Y (1993) A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J Biomed Mater Res 27(10):1243–1251

    Article  PubMed  CAS  Google Scholar 

  86. Orive G, Hernández RM, Gascón AR, Calafiore R, Chang TM, De Vos P, Hortelano G, Hunkeler D, Lacík I, Shapiro AM, Pedraz JL (2003) Cell encapsulation: promise and progress. Nat Med 9(1):104–107

    Article  PubMed  CAS  Google Scholar 

  87. Orive G, Hernández RM, Rodríguez Gascón A, Calafiore R, Chang TM, de Vos P, Hortelano G, Hunkeler D, Lacík I, Pedraz JL (2004) History, challenges and perspectives of cell microencapsulation. Trends Biotechnol 22(2):87–92

    Article  PubMed  CAS  Google Scholar 

  88. Paesold G, Nerlich AG, Boos N (2007) Biological treatment strategies for disc degeneration: potentials and shortcomings. Eur Spine J 16(4):447–468

    Article  PubMed  Google Scholar 

  89. Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12(5):1197–1211

    Article  PubMed  CAS  Google Scholar 

  90. Piez KA (1997) History of extracellular matrix: a personal view. Matrix Biol 16(3):85–92

    Article  PubMed  CAS  Google Scholar 

  91. Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S (2001) Composition and structure of articular cartilage: a template for tissue repair (review). Clin Orthop Relat Res 391(Suppl):S26–S33

    Article  PubMed  Google Scholar 

  92. Ratner BD, Bryant SJ (2004) Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng 6:41–75

    Article  PubMed  CAS  Google Scholar 

  93. Revell PA, Damien E, Di Silvio L, Gurav N, Longinotti C, Ambrosio L (2007) Tissue engineered intervertebral disc repair in the pig using injectable polymers. J Mater Sci Mater Med 18(2):303–308

    Article  PubMed  CAS  Google Scholar 

  94. Richardson SM, Curran JM, Chen R, Vaughan-Thomas A, Hunt JA, Freemont AJ, Hoyland JA (2006) The differentiation of bone marrow mesenchymal stem cells into chondrocyte-like cells on poly-L-lactic acid (PLLA) scaffolds. Biomaterials 27(22):4069–4078

    Article  PubMed  CAS  Google Scholar 

  95. Robert L (2001) Matrix biology: past, present and future. Pathol Biol (Paris) 49(4):279–283

    CAS  Google Scholar 

  96. Ruan D, He Q, Ding Y, Hou L, Li J, Luk KD (2007) Intervertebral disc transplantation in the treatment of degenerative spine disease: a preliminary study. Lancet 369(9566):993–999

    Article  PubMed  Google Scholar 

  97. Saad L, Spector M (2004) Effects of collagen type on the behavior of adult canine annulus fibrosus cells in collagen-glycosaminoglycan scaffolds. J Biomed Mater Res A 71(2):233–241

    Article  PubMed  CAS  Google Scholar 

  98. Sakai D, Mochida J, Iwashina T, Watanabe T, Suyama K, Ando K, Hotta T (2006) Atelocollagen for culture of human nucleus pulposus cells forming nucleus pulposus-like tissue in vitro: influence on the proliferation and proteoglycan production of HNPSV-1 cells. Biomaterials 27(3):346–353

    Article  PubMed  CAS  Google Scholar 

  99. Sakai D, Mochida J, Yamamoto Y, Nomura T, Okuma M, Nishimura K, Nakai T, Ando K, Hotta T (2003) Transplantation of mesenchymal stem cells embedded in Atelocollagen gel to the intervertebral disc: a potential therapeutic model for disc degeneration. Biomaterials 24(20):3531–3541

    Article  PubMed  CAS  Google Scholar 

  100. Sano A, Maeda M, Nagahara S, Ochiya T, Honma K, Itoh H, Miyata T, Fujioka K (2003) Atelocollagen for protein and gene delivery. Adv Drug Deliv Rev 55(12):1651–1677

    Article  PubMed  CAS  Google Scholar 

  101. Schmidt CE, Baier JM (2000) Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials 21(22):2215–2231

    Article  PubMed  CAS  Google Scholar 

  102. Schönherr E, Hausser HJ (2000) Extracellular matrix and cytokines: a functional unit. Dev Immunol 7(2–4):89–101

    PubMed  Google Scholar 

  103. Sebastine IM, Williams DJ (2007) Current developments in tissue engineering of nucleus pulposus for the treatment of intervertebral disc degeneration. Conf Proc IEEE Eng Med Biol Soc 2007:6401–6406

    PubMed  Google Scholar 

  104. Sekiya S, Shimizu T, Yamato M, Kikuchi A, Okano T (2006) Bioengineered cardiac cell sheet grafts have intrinsic angiogenic potential. Biochem Biophys Res Commun 341(2):573–582

    Article  PubMed  CAS  Google Scholar 

  105. Shimizu T, Sekine H, Yang J, Isoi Y, Yamato M, Kikuchi A, Kobayashi E, Okano T (2006) Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J 20(6):708–710

    PubMed  CAS  Google Scholar 

  106. Shimizu T, Yamato M, Kikuchi A, Okano T (2003) Cell sheet engineering for myocardial tissue reconstruction. Biomaterials 24(13):2309–2316

    Article  PubMed  CAS  Google Scholar 

  107. Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006

    Article  PubMed  CAS  Google Scholar 

  108. Sobajima S, Vadala G, Shimer A, Kim JS, Gilbertson LG, Kang JD (2008) Feasibility of a stem cell therapy for intervertebral disc degeneration. Spine J December (in press)

  109. Spector M (2006) Biomaterials-based tissue engineering and regenerative medicine solutions to musculoskeletal problems. Swiss Med Wkly 136(19–20):293–301

    PubMed  CAS  Google Scholar 

  110. Takezawa T, Mori Y, Yoshizato K (1990) Cell culture on a thermo-responsive polymer surface. Biotechnology (N Y) 8(9):854–856

    Article  CAS  Google Scholar 

  111. Tsuda Y, Shimizu T, Yamato M, Kikuchi A, Sasagawa T, Sekiya S, Kobayashi J, Chen G, Okano T (2007) Cellular control of tissue architectures using a three-dimensional tissue fabrication technique. Biomaterials 28(33):4939–4946

    Article  PubMed  CAS  Google Scholar 

  112. Uitto J, Olsen DR, Fazio MJ (1989) Extracellular matrix of the skin: 50 years of progress. J Invest Dermatol 92(4 Suppl):61S–77S

    Article  PubMed  CAS  Google Scholar 

  113. Uludag H, De Vos P, Tresco PA (2000) Technology of mammalian cell encapsulation. Adv Drug Deliv Rev 42(1–2):29–64

    Article  PubMed  CAS  Google Scholar 

  114. Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354(Suppl 1):SI32–SI34

    PubMed  Google Scholar 

  115. Vernengo J, Fussell GW, Smith NG, Lowman AM (2008) Evaluation of novel injectable hydrogels for nucleus pulposus replacement. J Biomed Mater Res B Appl Biomater 84(1):64–69

    PubMed  CAS  Google Scholar 

  116. Walker MH, Anderson DG (2004) Molecular basis of intervertebral disc degeneration. Spine J 4(6 Suppl):158S–166S

    Article  PubMed  Google Scholar 

  117. Wan AC, Yim EK, Liao IC, Le Visage C, Leong KW (2004) Encapsulation of biologics in self-assembled fibers as biostructural units for tissue engineering. J Biomed Mater Res A 71(4):586–595

    Article  PubMed  CAS  Google Scholar 

  118. Wan Y, Feng G, Shen FH, Laurencin CT, Li X (2008) Biphasic scaffold for annulus fibrosus tissue regeneration. Biomaterials 29(6):643–652

    Article  PubMed  CAS  Google Scholar 

  119. Wang IN, Lu HH (2006) Role of cell–cell interactions on the regeneration of soft tissue-to-bone interface. Conf Proc IEEE Eng Med Biol Soc 1:783–786

    Article  PubMed  Google Scholar 

  120. Wilda H, Gough JE (2006) In vitro studies of annulus fibrosus disc cell attachment, differentiation and matrix production on PDLLA/45S5 Bioglass composite films. Biomaterials 27(30):5220–5229

    Article  PubMed  CAS  Google Scholar 

  121. Wilke HJ, Heuer F, Neidlinger-Wilke C, Claes L (2006) Is a collagen scaffold for a tissue engineered nucleus replacement capable of restoring disc height and stability in an animal model? Eur Spine J 15(Suppl 3):S433–S438

    Article  PubMed  Google Scholar 

  122. Wong HL, Wang MX, Cheung PT, Yao KM, Chan BP (2007) A 3D collagen microsphere culture system for GDNF-secreting HEK293 cells with enhanced protein productivity. Biomaterials 28:5369–5380

    Article  PubMed  CAS  Google Scholar 

  123. Yang J, Yamato M, Shimizu T, Sekine H, Ohashi K, Kanzaki M, Ohki T, Nishida K, Okano T (2007) Reconstruction of functional tissues with cell sheet engineering. Biomaterials 28(34):5033–5043

    Article  PubMed  CAS  Google Scholar 

  124. Yang S, Leong KF, Du Z, Chua CK (2002) The design of scaffolds for use in tissue engineering: Part II. Rapid prototyping techniques. Tissue Eng 8(1):1–11

    Article  PubMed  CAS  Google Scholar 

  125. Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering: Part I. Traditional factors. Tissue Eng 7(6):679–689

    Article  PubMed  CAS  Google Scholar 

  126. Yannas IV (1996) Natural materials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials Sciences: an introduction to materials in medicine. Academic Press, New York, pp 84–93

    Google Scholar 

  127. Yim EK, Reano RM, Pang SW, Yee AF, Chen CS, Leong KW (2005) Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials 26(26):5405–5413

    Article  PubMed  CAS  Google Scholar 

  128. Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21(10):1171–1178

    Article  PubMed  CAS  Google Scholar 

  129. Zheng MH, Chen J, Kirilak Y, Willers C, Xu J, Wood D (2005) Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J Biomed Mater Res B Appl Biomater 73(1):61–67

    PubMed  CAS  Google Scholar 

  130. Zielinski BA, Aebischer P (1994) Chitosan as a matrix for mammalian cell encapsulation. Biomaterials 15(13):1049–1056

    Article  PubMed  CAS  Google Scholar 

  131. Zimmermann H, Hillgartner M, Manz B, Feilen P, Brunnenmeier F, Leinfelder U, Weber M, Cramer H, Schneider S, Hendrich C, Volke F, Zimmermann U (2003) Fabrication of homogeneously cross-linked, functional alginate microcapsules validated by NMR-, CLSM- and AFM-imaging. Biomaterials 24(12):2083–2096

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant from AOSpine to Leong and Chan (AOSBRC-07-06), support from NIH (EB003447) to Leong, and grants from Research Grant Council (RGC), Innovation and Technology Commission (ITC) of the Hong Kong Government to Chan.

Conflict of interest statement

None of the authors has any potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, B.P., Leong, K.W. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17 (Suppl 4), 467–479 (2008). https://doi.org/10.1007/s00586-008-0745-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-008-0745-3

Keywords

Navigation