Skip to main content
Log in

Arc magmatism in the Nkoula granitoid suites, Central African Fold belt in Cameroon: evidence of a metasomatized high oxidized S- and I- type magma

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Situated in the Tikar plain, the Nkoula granitoid suites consist of granites, quartz monzonites and syenites. The petrography, mineral chemistry and whole-rock geochemistry of the studied granitoids were done. The rocks are mainly made up of quartz, K-feldspar, plagioclase, amphibole, biotite ± sphene ± epidote. They are I-and S-type, metaluminous to peraluminous, magnesian and belong to high-K calc-alkaline to shoshonitic series. K-feldspars are orthoclase and plagioclases have the chemical composition of oligoclase. Biotites are reequilibrated primary Mg-rich while amphiboles are magmatic, calcic and essentially magnesian. All the granitoids display LREE enrichment and HREE depletion with negative Eu anomaly. The primitive mantle normalized trace element patterns display Rb, Ba, U, Th and Pb enrichment and depletion in Nb, Ta, Ti and P. The major and trace element variations indicate that fractional crystallization plays an important role during the magmatic processes of the S-type magma. The trace element ratios Ba/Rb, Nb/Ta, Y/Nb, Th/La, Sm/La, Hf/Sm and Ta/La, along with the biotite and amphibole chemistry, point to a crust-mantle mixed source for the Nkoula granitoid suites. The granitoids emplaced in the syn-collisional and volcanic arc setting. The most likely processes for the Nkoula granitoid consist of the partial melting of the subducted slab and the probable contribution of a mantle component. The break-off of the subducted slab may have favored the upwelling of the asthenosphere that supplies heat for the partial melting of the slab and crust components. The Nkoula granitoid magma displays 3–5 wt.% of water and was formed under high oxidizing conditions. They were emplaced at relatively shallow depth (3–9 km) and crystallized at about 800–900 °C in the Adamawa-Yade continental crust due to the subduction of the Yaounde oceanic crust under the Adamawa-Yade domain during the Pan-African orogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

taken from O’Neill and Pownceby (1993). (HM: Hematite -Magnetite; NNO: Nickel-Nickel Oxide; FMQ Fayalite-Mag netite-Quartz;QIF:Quartz-Iron-Fayalite WM: Wüstite – Magnetite; I W: Iron- Wüstite. Error bars represent the expected σrest (22 °C) and maximum logfO2 errors (0.4 log unit). c displays representative error bars indicating the variation in accuracy with P. The maximum relative P errors range from 11% (at the maximum thermal stability curve; black dotted line at the right) to 25% (at the upper limit of consistent amphiboles; black dotted line at the left). The red dashed curve at the center roughly divides consistent experimental products with different crystallinity. The 30 to 100 values represent biotite stability as a function of (100 × Fe/(Fe + Mg)))

Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

source and M = mafic mantle source). d (Ta/La)N versus (Hf/Sm)N plot (La Fleche et al. 1998), for the differentiation of the metasomatic agent involved in the petrogenesis of the Nkoula granitoid suites. Normalizations are after Mc Donough and Sun (1995)

Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abbasi S, Tabatabaei Manesh SM, Karimi S, Parfenova OV (2014) Relative contributions of crust and mantle to generation of Oligo-Miocene MediumK CalcAlkaline IType granitoids in a subduction setting—a Case Study from the Nabar Pluton. Central Iran J Petrol 22(3):310–328

    Google Scholar 

  • Abdel-Rahman AM (1994) Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. J Petrol 35:525–541

    Article  Google Scholar 

  • Anderson JL, Smith DR (1995) The effects of temperature and fO2 on the Al-in hornblende barometer. Am Miner 80:549–559

    Article  Google Scholar 

  • Atherton MP, Petford N (1993) Generation of sodium–rich magmas from newly Underplated basaltic crust. Nature 362(6416):144–146

    Article  Google Scholar 

  • Barbarin B (1999) A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46:605–626. https://doi.org/10.1016/S0024-4937(98)00085-1

    Article  Google Scholar 

  • Barth MG, McDonough WF, Rudnick RL (2000) Tracking the budget of Nb and Ta in the continental crust. Chem Geol 165:197–213

    Article  Google Scholar 

  • Batchelor RA, Bowden P (1985) Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem Geol 48(1):43–55

    Article  Google Scholar 

  • Beard J, Lofgren G (1991) Partial melting of basaltic and andesitic green- stones and amphibolites under dehydration melting and water- saturated conditions at 1, 3, and 6.9 kilobars. J Petrol 32:365–401

    Article  Google Scholar 

  • Benito R, Lopez-Ruiz J, Cebria JM, Hertogen J, Doblas M, Oyarzun R et al (1999) Sr and O isotope constraints on source and crustal contamination in the high-K calc-alkaline and shoshonitic neogene volcanic rocks of SE Spain. Lithos 46:773–802. https://doi.org/10.1016/S0024-4937(99)00003-1

    Article  Google Scholar 

  • Browne SE, Fairhead JD (1983) Gravity study of the Central African Rift System: a model of continental disruption 1. The Ngaoundere and Abu Gabra rifts. Tectonophysics 94:187–203

    Article  Google Scholar 

  • Castillo PR (2006) An overview of adakite petrogenesis. Chin Sci Bull 51:257–268

    Article  Google Scholar 

  • Castillo PR, Newhall CG (2008) Geochemical constraints on possible subduction components in lavas of Mayon and Taal Volcanoes, Southern Luzon, Philippines. J Petrol 45:1089–1108

    Article  Google Scholar 

  • Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Aust J Earth Sci 48:489–500

    Article  Google Scholar 

  • Chen M, Sun M, Buslov MM, Cai K, Zhao G, Kulikova VA et al (2016) Crustal melting and magma mixing in a continental arc setting: evidence from the Yaloman intrusive complex in the Gorny Altai terrane. Central Asian Orogenic Belt Lithos 252–253:76–91. https://doi.org/10.1016/j.lithos.2016.02.016

    Article  Google Scholar 

  • Chung SL, Lo CH, Lee T, Zhang YQ, Xie YW, Li XH, Wang KL, Wang PL (1998) Diachronous uplift of the Tibetan plateau starting 40 Myr ago. Nature 394(6695):769–773

    Article  Google Scholar 

  • Coltorti M, Bonadiman C, Faccini B, Grégoire M, O’Reilly SY, Pow-ell W (2007) Amphiboles from suprasubduction and intraplate lithospheric mantle. Lithos 99(1–2):68–84. https://doi.org/10.1016/j.lithos.2007.05.009

    Article  Google Scholar 

  • Cornachia M, Dars R (1983) Un trait structural majeur du continent africain: Les linéaments centrafricains du Cameroun au golfe d’Aden. Bull Soc Géol Fr 25:101–109

    Article  Google Scholar 

  • Deer WA, Howie RA and Zussman J (1992) An Introduction to the Rock Forming Minerals. London: Longman: 696

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    Article  Google Scholar 

  • Defant MJ, Drummond MS (1993) Mount St. Helens: potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology 21:547–550

    Article  Google Scholar 

  • Djouka-Fonkwe ML, Schulz B, Schüssler UC, Tchouankoue J-P, Nzolang C (2008) Geochemistry of the Bafoussam Pan-African I- and S-type granitoids in western Cameroon. J Afr Earth Sci 50:148–167

    Article  Google Scholar 

  • Drummond MS, Defant MJ (1990) A model for trondhjemite–tonalite– dacite genesis and crustal growth via slab melting: archean to modern comparisons. J Geophys Res 95:21503–21521

    Article  Google Scholar 

  • Duggen S, Hoernle K, Van P, Bogaard D, Garbe AD (2005) Post–colli- sional transition from subduction–to intraplate–type magmatism in the westernmost Mediterranean: evidence for continental edge delamination of subcontinental lithosphere. J Petrol 46(12):1155–1201

    Article  Google Scholar 

  • Eby GN (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26:115–134

    Article  Google Scholar 

  • Eby GN (1992) Chemical subdivision of the A-type granitoids: petroge- netic and tectonic implications. Geology 20(7):641–644. https://doi.org/10.1130/0091-7613(1992)020%3c0641:CSOTAT%3e2.3.CO;2

    Article  Google Scholar 

  • Fairhead JD (1988) Mesozoic plate tectonic reconstruction of the central South Atlantic Ocean: the role of the West and Central African Rift Systems. Tectonophysics 155:181–191

    Article  Google Scholar 

  • Foster MD (1960) Interpretation of the composition of trioctahedral micas: US Geological Survey Professional Paper 354(B):1–146

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048

    Article  Google Scholar 

  • Ganwa AA, Klotzli US, Hauzenberger C (2016) Evidence for Archean inheritance In the pre-Panafrican crust of Central Cameroon: insight from zircon internal structure and LA-MCICP-MS U/Pb ages. J Afr Earth Sci 120:12–22

    Article  Google Scholar 

  • Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC, Wang QH (2004) Recycling lower continental crust in the North China craton. Nature 432(7019):892–897

    Article  Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer-Verlag, Berlin:390

  • Giret A, Bonin B, Leger J-M (1980) Amphibole compositional trends in oversaturated and undersaturated alkaline plutonic ring-complexes. Canadian Miner 18:481–495

    Google Scholar 

  • Green TH (1995) Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chem Geol 120(3–4):347–359. https://doi.org/10.1016/0009-2541(94)00145-X

    Article  Google Scholar 

  • Hammarstrom JM, Zen E (1986) Aluminium in Hornblende: an Empirical Igneous Geobarometer. Amer Miner 71:1297–1313

    Google Scholar 

  • Hawkesworth CJ, Hergt JM, Ellam RM, Mc Dermott F (1991) Element fluxes associated with subduction related magmatism. Phil Trans R Soc Lond A 335(1638):393–405

    Article  Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contr Miner Petrol 98:455–489. https://doi.org/10.1007/BF00372365

    Article  Google Scholar 

  • Hoffman PF (1988) United Plates of America, the birth of a craton: early Proterozoic assembly and growth of North America. Ann Rev Earth Sci Lett 16:543–603

    Article  Google Scholar 

  • Hollister LS, Grisson GC, Peters EK, Stowell HH, Sisson VB (1987) Confirmation of the empirical correlation of Al in Hornblende with pressure of solidification of Calc-Alkaline Plutons. Amer Miner 72:231–239

    Google Scholar 

  • Hou ZQ, Pan GT, Wang AJ, Mo XX, Tian SH, Sun XM, Ding L, Wang EQ, Gao YF, Xie YL (2006) Metallogenesis in Tibetan collisional Orogenic Belt: mineralization in late–collisional transformation setting. Miner Deposits 25(5):521–543 (in Chinese with English abstract)

    Google Scholar 

  • Huang H, Niu Y, Zhao Z, Hei H, Zhu D (2011) On the enigma of Nb-Ta and Zr-Hf fractionation. a critical review. J Earth Sci 22:52–66

    Article  Google Scholar 

  • Johnson MC, Rutherford MJ (1989) Experimental calibration of the aluminium-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology 17:837–841

    Article  Google Scholar 

  • Kalfoun F, Ionov D, Merlet C (2002) HFSE residence and Nb/Ta ratios in metasomatised, rutile-bearing mantle peridotites. Earth Planet Sci Lett 199:49–65

    Article  Google Scholar 

  • Kamber BS, Collerson KD (2000) Role of hidden subducted slabs in mantle depletion. Chem Geol 166:241–254

    Article  Google Scholar 

  • Kamguia Kamani MS, Wang W, Tchouankoue J-P, Huang S-F, Yomeun B, Xue E-K, Gui-Mei Lu (2021) Neoproterozoic syn-collision magmatism in the Nkondjock region at the northern border of the Congo craton in Cameroon: Geodynamic implications for the Central African orogenic belt. Precambr Res 353:106015. https://doi.org/10.1016/j.precamres.2020.106015

    Article  Google Scholar 

  • Kumar G, Kumar S, Mohan MR (2021) Redox series assessment, petrogenetic, and geodynamic appraisal of Neoarchean granites from the Bundelkhand Craton, Central India: Constraints from phase petrology and bulk rock geochemistry. Geol Jour. https://doi.org/10.1002/gj.4087

    Article  Google Scholar 

  • Kwekam M, Liegeois J-P, Njonfang E, Affaton P, Hartmann G, Tchoua F (2010) Nature, origin and significance of the Fomopea Pan-African high-K calc-alkaline plutonic complex in the Central African fold belt (Cameroon). J Afr Earth Sci 57:79–95

    Article  Google Scholar 

  • La Fleche MR, Camire G, Jenner GA (1998) Geochemistry of post- Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen Islands, Quebec. Canada Chem Geol 148(1):115–136. https://doi.org/10.1159/000170575

    Article  Google Scholar 

  • Leake BE (1971) On aluminous and edenitic hornblende. Mineral Mag 38:389–407

    Article  Google Scholar 

  • Leake BE, Woolley AR, Birch WD, Burke EAJ, Ferraris G, Grice JD, Hawthorne FC, Kisch HJ, Krivovichev VG, Schumacher JC, Stephenson NCN, Whittaker EJW (2004) Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s Amphibole Nomenclature. Eur J Miner 16:191–196

    Article  Google Scholar 

  • Lee C-TA, Bachmann O (2014) How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics. Earth Planet Sci Lett 393:266–274. https://doi.org/10.1016/j.epsl.2014.02.044

    Article  Google Scholar 

  • Lerouge C, Cocherie A, Toteu SF, Penaye J, Milési JP, Tchameni R, Nsifa EN, Fanning CM, Deloule E (2006) Shrimp U-Pb zircon age evidence for Paleoproterozoic sedimentation and 2.05 Ga syntectonic plutonism in the Nyong Group, South-Western Cameroon: consequences for the Eburnean-Transamazonian belt of NE Brazil and Central Africa. J Afr Earth Sci 44:413–427

    Article  Google Scholar 

  • Luhr JF, Carmichael ISE, Varekam JC (1984) The 1982 eruptions of El Chichón Volcano, Chiapas, Mexico: mineralogy and petrology of the anhydrite bearing pumices. J Volcanol Geotherm Res 23:69–108

    Article  Google Scholar 

  • Maniar PD, Piccoli PM (1989) Teconic discrimination of granitoids. Geol Soc Amer Bull 101:635–643

    Article  Google Scholar 

  • Martin H, Smithies RH, Rapp R, Moyen JF, Champion D (2005) An overview of Adakite, Tonalite–Trondhjemite–granodiorite (TTG), and Sanukitoid: relationships and some implications for crustal evolution. Lithos 79(1–2):1–24

    Article  Google Scholar 

  • Sun S‐S & McDonough W‐S (1989) Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1):313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

  • McDonough WF, Sun SS (1995) The composition of the earth. Chemi Geol 120:223–253

    Article  Google Scholar 

  • Middlemost EAK (1985) An introduction to igneous petrology (Magmas and magmatic rocks). Longman, LondonNew York : 266

  • Miller C, Thoni M, Frank W, Graseman B, Klötzli U, Gruntli P, Draganits E (2001) The early Palaeozoic magmatic event in the Northwest Himalaya, India: source, tectonic setting and age of emplacement. Geol Mag 138:237–251

    Article  Google Scholar 

  • Mutch EJF, Blundy JD, Tattitch BC, Cooper FJ, Brooker RA (2016) An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer. Contrib Miner Petrol 171(10):1–27. https://doi.org/10.1007/s00410-016-1298-9

    Article  Google Scholar 

  • Nachit H, Razafimahefa N, Stussi JM, Carron JP (1985) Composition chimique des biotites et typologie magmatique des granites: Comptes Rendus. Acad Sci Série II(301):813–818

    Google Scholar 

  • Nachit H, Ibhi A, Abia EH, Ohoud MB (2005) Discrimination between primary magmatic biotites, reequili brated biotites and neoformed biotites Geomaterials (Mineralogy). Copmtes Rendus, Geosci 337:1415–1420

    Article  Google Scholar 

  • Nédélec A, Nsifa E, Martin H (1990) Major and trace element geochemistry of the Archean Ntem plutonic complex (South Cameroon): petrogenesis and crustal evolution. Precambr Res 47:35–50

    Article  Google Scholar 

  • Ngamy Kamwa A, Tchakounté JN, Nkoumbou C, Owona S, Tch- ouankoue J-P, Mvondo OJ, (2019) Petrology and geochemistry of syn-collisional pan-african granitoid intrusion in the archaean adamawa-yade crust: the Yoro-Yangben massif, (Sw-Bafia, Cameroon). J Afr Earth Sci 150:401–414

    Article  Google Scholar 

  • Ngnotue T, Nzenti JP, Barbey P, Tchoua FM (2000) The Ntui-Betamba highgrade gneisses: a northward extension of the Pan-African Yaounde gneisses in Cameroon. J Afr Earth Sci 31:369–381

    Article  Google Scholar 

  • Nguiessi-Tchankam C, Nzenti J-P, Nsifa EN, Tempier P, Tchoua FM (1997) Les granitoıdes calco-alcalins, syncisaillement de Bandja dans la chaıne panafricaine nord equatoriale au Cameroun. C R l’Academie des Sciences Paris 325 (II):95–101

  • Njanko T, Nedelec A, Affaton P (2006) Synkinematic high-K calc-alkaline plutons associated with the Pan-African Central Cameroon Shear Zone (W Tibati area): petrology and geodynamic significance. J Afr Earth Sci 44:494–510

    Article  Google Scholar 

  • Njonfang E, Ngako V, Kwekam M, Affaton P (2006) Les orthogneiss calco-alcalins de Foumban-Bankim : temoins d’une zone interne de marge active panafricaine en cisaillement. C.R. Comptes Rendus Geosci 338:606–616

    Article  Google Scholar 

  • Njonfang E, Ngako V, Moreau Ch, Affaton P, Diot H (2008) Restraining bends in high temperature shear zones: the “Central Cameroon Shear Zone.” Central Africa J Afr Earth Sci 52:9–20

    Article  Google Scholar 

  • Nkoumbou C, Barbey P, Yonta-Ngouné C, Paquette JL, Villiéras F (2014) Pre-collisional geodynamic context of the southern mar- gin of the Pan-African fold belt in Cameroon. J Afr Earth Sci 99:245–260

    Article  Google Scholar 

  • Ntieche B, Mohan MR, Moundi A, Mounjouohou MA (2016) Petrogenesis and geochemical characterization of the granitoids of the Magba Shear Zone West Cameroon Central Africa. OJG 6:812–839

    Article  Google Scholar 

  • Ntiéche B, Mohan MR, Moundi A (2017) Granitoids of the Magba Shear Zone, West Cameroon, Central Africa: evidences for emplacement under transpressive tectonic regime. J Geol Soc of India 89:33–46

    Article  Google Scholar 

  • Ntieche B, Ram Mohan M, Amidou M, Pauline WN, Mounjouohou MA, Nchouwet Z, Mfepat D (2021) Petrochemical constrains on the origin and tectonic setting of mafic to intermediate dykes from Tikar plain, Central Cameroon Shear Zone. SN A Sci 3:211. https://doi.org/10.1007/s42452-021-04265-5

    Article  Google Scholar 

  • Nzenti JP (1998) Neoproterozoic alkaline meta-igneous rocks from the Pan-African north equatorial fold belt (Yaounde, Cameroon): Biotitites and magnetic rich pyroxenites. J Afr Earth Sci 26:37–47

    Article  Google Scholar 

  • Nzenti JP, Barbey P, Macaudiere J, Soba D (1988) Origin and evolution of the Late Precambrian high-grade Yaounde gneiss (Cameroon). Precamb Res 38:91–109

    Article  Google Scholar 

  • Nzolang C, Kagami H, Nzenti J-P, Holtz F (2003) Geochemistry and preliminary Sr–Nd isotopic data on the Neoproterozoic granitoids from the Bantoum area, West Cameroon. Evidence for a derivation from a Paleoproterozoic to Archean crust. Polar Geosci 16:196–226

    Google Scholar 

  • O’Connor AC (1965) A classification for quartz-rich igneous rocks based on feldspar ratios. US Geol Surv Prof Paper 525B:79–84

    Google Scholar 

  • O’Neill HSC, Pownceby M I (1993) Thermodynamic data from redox reactions at high temperatures. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for the Fe–FeO, Co–CoO, Ni–NiO and Cu–Cu2 O oxygen buffers, and new data for the W–WO2 buffer. Contrib Miner Petrol 114(3): 296–314

  • Pearce J (1996) Sources and settings of granitic rocks. Episodes 19:120–125

    Article  Google Scholar 

  • Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48

    Article  Google Scholar 

  • Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Planet Sci 23:251–285

    Article  Google Scholar 

  • Pearce JA, Harris NBW, Tindle AC (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Article  Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Miner Petrol 58:63–81

    Article  Google Scholar 

  • Penaye J, Toteu SF, Van Schmus WR, Nzenti JP (1993) Donnees geochronologiques preliminaires (U–Pb et Sm–Nd) sur la serie de Yaounde: age du metamorphisme granulitique de la zone mobile panafricaine à proximite du craton du Congo. Comptes Rendus Acad Sci 317:789–797

    Google Scholar 

  • Penaye J, Kröner A, Toteu SF, Van Schmus WR, Doumnang J-C (2006) Evolution of the Mayo Kebbi region as revealed by zircon dating: an early (ca. 740 Ma) Pan-African magmatic arc in southwestern Chad. J Afr Earth Sci 44:530–542

    Article  Google Scholar 

  • Pfander JA, Munker C, Stracke A, Mezger K (2007) Nb/Ta and Zr/Hf in ocean island basalts, implications for crust–mantle differentiation and the fate of Niobium. Earth Planet Sci Lett 254:158–172

    Article  Google Scholar 

  • Plank T (2005) Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J Petrol 46:921–944

    Article  Google Scholar 

  • Pupin JP (1980) Zircon and granite petrology. Contribut Miner Petrol 73:207–220. https://doi.org/10.1007/BF00381441

    Article  Google Scholar 

  • Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanos. Contrib Miner Petrol 160:45–66

    Article  Google Scholar 

  • Rudnick R, Fountain D (1995) Nature and composition of the continental crust, a lower crustal perspective. Rev Geophys 33:267–309

    Article  Google Scholar 

  • Rudnick RL and Gao S (2003) The composition of the continental crust. In: Rudnick, R.L (Ed.) The Crust. Elsevier-Pergamon, Oxford 1–64

  • Rustioni G, Audetat A, Keppler H (2019) Experimental evidence for fluid-induced melting in subduction zones. Geochem Persp Lett 11:49–54. https://doi.org/10.7185/geochemlet.192

    Article  Google Scholar 

  • Schmidt MW (1992) Amphibole Composition in Tonalite as a Function of Pressure: an Experimental Calibration of the Al- in-Hornblende Barometer: Contributions to Miner Petrol 110:304–310

    Google Scholar 

  • Shang CK, Satir M, Siebel W, Nsifa EN, Taubald H, Liégeois JP, Tchoua FM (2004) TTG magmatism in the Congo craton; a view from major and trace element geochemistry, Rb–Sr and Sm–Nd systematics: case of the Sangmelima region, Ntem complex, southern Cameroon. J Afr Earth Sci 40:61–79

    Article  Google Scholar 

  • Shang CK, Satir M, Nsifa EN, Liegeois JP, Siebel W, Taubald H (2007) Archaean high-K granitoids produced by remelting of earlier Tonalite-Trondhjemite- Granodiorite (TTG) in the Sangmelima region of the Ntem Complex of the Congo craton, southern Cameroon. Inter J Earth Sci 96:817–841

    Article  Google Scholar 

  • Smith JV, Brown WL (1988) Feldspar minerals: second revised and extended. Springer, Berlin: 828

  • Stein E, Dietl C (2001) Hornblende thermobarometry of granitoids from the Central Odenwald (Germany) and their implications for the geotectonic development of the Odenwald. Miner Petrol 72:185–207

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution Oxford press. States, United: 312

  • Tchakounte Numbem J, Fuh CG, Ngamy Kamwa A, Metang V, Mvondo Ondoa J, Nkoumbou C (2021) Petrology and geochemistry of the Pan‑African high‑K calc‑alkaline to shoshonitic–adakitic Bapé plutonic suites (Adamawa‑Yade block, Cameroon): evidence of a hot oceanic crust subduction Inter J Earth Sci. https://doi.org/10.1007/s00531-021-02060-6

  • Tchameni R, Pouclet A, Penaye J, Ganwa AA, Toteu SF (2006) Petrog- raphy and geochemistry of the Ngaoundere Pan-African granitoids in Central North Cameroon: Implications for their sources and geo-logical setting. J Afr Earth Sci 44:511–529

    Article  Google Scholar 

  • Tchouankoue JP, Li XH, Ngo Belnoun RN, Mouafo L, Ferreira VP (2016) Timing and tectonic implications of the Pan-African Bangangte Syenomonzonite: constraints from in-situ zircon U-Pb age and Hf–O isotopes. J Afr Earth Sci 124:94–103

    Article  Google Scholar 

  • Thieblemont D and Tegyey M (1994) Une discrimination geochimique des roches differenciees temoin de la diversite d’origine et de situation tectonique des magmas calco-alcalins. Comptes Rendus de l’Acad Sci Paris 319 (II):87–94

  • Toteu SF, Van Schmus WR, Penaye J, Nyobe JB (1994) U-Pb and Sm–Nd evidence for Eburnean and Pan- African high-grade metamorphism in cratonic rocks of southern Cameroon. Precamb Res 67:321–347

    Article  Google Scholar 

  • Toteu SF, Van Schmus WR, Penaye J, Michard A (2001) New U– Pb and Sm–Nd data from north-central Cameroon and the pre-Pan-African history of central Africa. Precambr Res 108:45–73

    Article  Google Scholar 

  • Toteu SF, Penaye J, Djomani YP (2004) Geodynamic evolution of the Pan-African belt in central Africa with special reference to Cameroon. Canadian J Earth Sci 41:73–85

    Article  Google Scholar 

  • Toteu SF, Yongué Fouateu R, Penaye J, Tchakounté J, Semé Mouangué AC, Van Schmus WR, Deloule E, Stendal H (2006) U-Pb dating of plutonic rocks involved in the nappe tectonic in southern Cameroon: consequence for the Pan-African fold belt. J Afr Earth Sc 44:479–493

    Article  Google Scholar 

  • Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, Calsteren PV, Deng W (1996) Post-collision shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the Lithosphere and the source of ocean island basalts. J Petrol 37:45–71

    Article  Google Scholar 

  • Uchida E, Endo S, Makino M (2007) Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Res Geol 57:47–56

    Article  Google Scholar 

  • Van Schmus WR, Oliveira EP, da Silva Filho AF, Toteu SF, Penaye J, Guimarães IP (2008) Proterozoic links between the Borborema Province, NE Brazil, and the Central African Fold Belt. Geol Soc Lond Spec Publ 294:69–99

    Article  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232

    Article  Google Scholar 

  • Weyer S, Munker C, Mezger K (2003) Nb/Ta, Zr/Hf and REE in the depleted mantle: implications for the differentiation history of the crust-mantle system. Earth Planet Sci Lett 205:309–324

    Article  Google Scholar 

  • Willson M (1989) Igneous petrogenesis; a global tectonic approach. Unwin Hyman, London:466

  • Wones DR (1981) Mafic silicates as indicators of intensive variables in granitic magmas. Mining Geol 31(168):191–212

    Google Scholar 

  • Wones DR (1989) Significance of the assemblage titanite + magnetite + quartz in granitic rocks. Amer Miner 74(7–8):744–749

    Google Scholar 

  • Xiong XL, Xian-Hua LI, Ji-Feng XU, Wu-Xian LI, Zhao ZH, Wang Q, Chen XM (2003) Extremely high–Na Adakite–like magmas derived from alkali–rich basaltic Underplate: the late cretaceous Zhantang Andesites in the Huichang Basin. SE China Geochem J 37(2):233–252

    Article  Google Scholar 

  • Zhou ZX (1986) The origin of intrusive mass in Fengshandong. Hubei Province Acta Petrologica Sinica 2(2):59–70

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the TWAS-CSIR fellowship for their support for major and trace element analyses. We also thank Professor Miguel Baez and anonymous reviewers for their constructive remarks. Special thanks to Professor Sajeev Krishnan and Dr Claude Nambaje, both from the Indian Institute of Science, Bengaluru, India, for the EPMA analyses.

Funding

The World Academy of Sciences, TWAS-CSIR 2014–2015, Ntieche Benjamin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Ntieche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ntieche, B., Wokwenmendam Nguet, P., Moundi, A. et al. Arc magmatism in the Nkoula granitoid suites, Central African Fold belt in Cameroon: evidence of a metasomatized high oxidized S- and I- type magma. Int J Earth Sci (Geol Rundsch) 111, 1223–1250 (2022). https://doi.org/10.1007/s00531-022-02175-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-022-02175-4

Keywords

Navigation