Skip to main content
Log in

The age of young intrusions of Tsana Complex (Greater Caucasus) and isotope-geochemical evidence for their origin from hybrid magmas

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

This paper presents isotope-geochronological and petrological study of granitoids of the potentially ore-bearing (Au–As–Sb–Sn–Mo) Early Pliocene Tsana Complex, which are confined to the Main Caucasus fault zone (upthrow fault) in the central part of the Greater Caucasus Range. The Tsurungal and Karobi groups of magmatic bodies are distinguished based on spatial criterion. The Tsurungal group includes three small granite—granodiorite massifs (Tsurungal, Chorokhi, and Toteldash) and numerous acid and intermediate dikes in the upper reaches of the Tskhenistsqali River (Kvemo Svaneti, Georgia). The Karobi group comprises three subvolcanic rhyodacite bodies located in the upper reaches of the Chashuri River (Zemo Racha, Georgia) and numerous N–S-trending trachyandesite dikes near the axial zone of the Main Caucasus Range. The K-Ar and Rb-Sr isotope dating shows that the granitoid massifs and dike bodies of the Tsana Complex were formed in two different-age pulses of the Pliocene magmatism: phase I at 4.80 ± 0.15 and phase II at 4.15 ± 0.10 Ma. All hypabyssal rocks of the Karobi group, unlike those of the Tsurungal Group, were formed during the first pulse. Petrographic studies in combination with geochemical data indicate that most of the granitoids of the Tsana Complex are hybrid rocks (I-type post-collisional granites) and were derived through mixing of deep-seated mantle magmas with acid melts obtained by the upper crustal anatectic melting in the Main Caucasus fault zone. The granitoids of the Tsurungal Group define basic to acid evolution (diorite–granodiorite–granite–two-mica granite) possibly caused by both crystallization differentiation and increasing role of crustal contamination in the petrogenesis of the parental magmas of these rocks. This conclusion is also confirmed by the differences in the Sr isotope composition between granitoids of the early (87Sr/86Sr = 0.7053) and late (87Sr/86Sr = 0.7071) phases of the Tsana Complex. Main trends in spatiotemporal migration of magmatic activity in the central part of the Greater Caucasus in the Pliocene–Quaternary time were established using obtained and earlier published isotope-geochronological data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belyankin, D.S., On the age problem of some Caucasian intrusions, Izv. Geol. Kom., 1924, vol. 43, no. 3, pp. 409–424.

    Google Scholar 

  • Bogina, M.M., Petrology of the Pliocene Granitoids of the Greater Caucasus, Extended Abstract of Cand. Sci. (Geolmin) Dissertation, Moscow: IGEM RAN, 1994.

    Google Scholar 

  • Borsuk, A.M., Mezozoiskie i kainozoiskie magmaticheskie formatsii Bol’shogo Kavkaza (Mesozoic and Cenozoic Magmatic Associations of the Greater Caucasus), Moscow: Nauka, 1979.

    Google Scholar 

  • Chappell, B.W. and White, A.J.R., Two contrasting granite types, Pacific Geology, 1974, vol. 8, pp. 173–174.

    Google Scholar 

  • Chernyshev, I.V., Lebedev, V.A., and Arakelyants, M.M., K-Ar dating of Quaternary volcanics: methodology and interpretation of results, Petrology, 2006, vol. 14, no. 1, pp. 62–80.

    Article  Google Scholar 

  • Chernyshev, I.V., Lebedev, V.A., Bubnov, S.N., et al., Pliocene ignimbrites of the Elbrus area in the Neogene— Quaternary volcanism history within the Greater Caucasus (isotope–geochronological data), Dokl. Earth Sci., 2011, vol. 436, no. 1, pp. 102–107.

    Article  Google Scholar 

  • Dokuchaev, A.Ya., Bogatikov, O.A., Gurbanov, A.G., et al., Metallogeny of Neogene granitoid magmatism of the Greater Caucasus and Cis-Caucasus: position and metallogenic evolution of the Alpine–Himalayan belt, in Granitoidy: usloviya formirovaniya i rudonosnost'. Materialy nauchnoi konferentsii (Granitoids: Conditions of Formation and Ore Potential: Proceedings of Conference), Kiev: Institut geokhimii, mineralogii i rudoobrazovaniya im. N.P. Semenenko, 2013, pp. 46–47.

    Google Scholar 

  • Dubinina, E.O., Nosova, A.A., Avdeenko, A.S., and Aranovich, A.Ya., Isotopic (Sr, Nd, O) systematics of the high Sr–Ba Late Miocene granitoid intrusions from the Caucasian Mineral Waters Region, Petrology, 2010, vol. 18, no. 3, pp. 211–238.

    Article  Google Scholar 

  • Ershov, A.D., Structure of the Tsurungal (Tsena) ore field, Probl. Sov. Geol., 1938, vol. 8, no. 4, pp. 270–289.

    Google Scholar 

  • Ershov, A.D., Ore potential of the Zemo Racha and Svaneti, Sov. Geol., 1940, no. 8, pp. 24–37.

    Google Scholar 

  • Ershov, A.D. and Kopeliovich, A.V., Tsena arsenopyrite deposit of the Zemo Svaneti, Mineral. Syr’e, 1937, no. 2, pp. 3–13.

    Google Scholar 

  • Gazis, C.A., Lanphere, M., Taylor, H.P., et al., 40Ar/39Ar and 18°/16° studies of the Chegem ash-flow caldera and the Eldjurta granite: cooling of two Pliocene igneous bodies in the Greater Caucasus mountains, Russia, Earth Planet. Sci. Lett., 1995, vol. 134, pp. 377–391.

    Article  Google Scholar 

  • Hess, J.C., Lippolt, H.J., Gurbanov, A.G., and Michalski, I., The cooling history of the Late Pliocene Edzhurtinsky granite (Caucasus, Russia) and the thermochronological potential of grain-size/age relationship, Earth Planet. Sci. Lett., 1993, vol. 117, nos. 3–4, pp. 393–406.

    Article  Google Scholar 

  • Kekelia, S.A., Kekelia, M.A., Kuloshvili, S.I., et al., Gold deposits and occurrences of the Greater Caucasus, Georgia Republic: their genesis and prospecting criteria, Ore Geol. Rev., 2008, vol. 34, pp. 369–386.

    Article  Google Scholar 

  • Kharashvili, G.I., Ore occurrences in the upper reaches of the Chveshuri River, Sov. Geol., 1940, no. 7, pp. 113–118.

    Google Scholar 

  • Kiknadze, I.I., Petrochemical features of the young intrusive rocks of the upper reaches of the Tskhenistsqali River (Kvemo Svaneti), Tr. Geol. Inst. AN GSSR, Ser. Miner.-Petr, 1961, vol. 6, pp. 137–144.

    Google Scholar 

  • Kiknadze, I.I., Petrologiya tretichnykh intruzivnykh porod verkhov’ev r. Tskhenistskali (Petrology of Tertiary Intrusive Rocks of the Upper Reaches of the Tskhenistsqali River), Tbilisi: Metsniereba, 1967.

    Google Scholar 

  • Konstantinov, M.M., Laipanov, Kh.Kh., Danil’chenko, V.A., et al., Geological structure and prospects of the Tanadon gold–arsenopyrite deposit, Razved. Okhr. Nedr, 2005, no. 2–3, pp. 2–10.

    Google Scholar 

  • Koronovskii, N.V. and Demina, L.I., Late Cenozoic Magmatism of the Greater Caucasus, in Bol’shoi Kavkaz v al’piiskuyu epokhu (Greater Caucasus in the Alpine Epoch), Moscow: GEOS, 2007, pp. 252–284.

    Google Scholar 

  • Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., and Zanettin, B., A chemical classification of volcanic rocks based on the total alkali—silica diagram, J. Petrol., 1986, vol. 27, pp. 745–750.

    Article  Google Scholar 

  • Lebedev, V.A., Dudauri, O.Z., and Gol’tsman, Yu.V., Early Pleistocene magmatism of the central Greater Caucasus, Dokl. Earth Sci., 2016 (in press).

    Google Scholar 

  • Lebedev, V.A., Chernyshev, I.V., Avdeenko, A.S., et al., Heterogeneity of Ar and Sr initial isotopic composition in the coexisting minerals from Miocene hypabyssal granitoids in the Caucasian Mineral Waters region, Dokl. Earth Sci., 2006a, vol. 410, no. 1, pp. 1070–1074.

    Article  Google Scholar 

  • Lebedev, V.A., Chernyshev, I.V., Chugaev, A.V., et al., K-Ar Age and Sr-Nd characteristics of subalkali basalts in the central Georgian Neovolcanic Area (Greater Caucasus), Dokl. Earth Sci., 2006b, vol. 408, no. 4, pp. 657–661.

    Article  Google Scholar 

  • Lebedev, V.A., Bubnov, S.N., Chernyshev, I.V., et al., Geochronology and genesis of the young (Pliocene) granitoids of the Greater Caucasus: Dzhimara multiphase massif of the Kazbek neovolcanic area, Geochem. Int., 2009, vol. 47, no. 6, pp. 550–567.

    Article  Google Scholar 

  • Lebedev, V.A., Chernyshev, I.V., Chugaev, A.V., et al., Geochronology of eruptions and parental magma sources of Elbrus Volcano, the Greater Caucasus: K-Ar and Sr-Nd-Pb isotope data, Geochem. Int., 2010, vol. 48, no. 1, pp. 41–67.

    Article  Google Scholar 

  • Lebedev, V.A., Chernyshev, I.V., Dudauri, O.Z., et al., Manifestations of Miocene acid intrusive magmatism on the southern slope of the Greater Caucasus: first evidence from isotope geochronology, Dokl. Earth Sci., 2013, vol. 450, no. 3, pp. 550–555.

    Article  Google Scholar 

  • Lebedev, V.A. and Vashakidze, G.T., The catalogue of Quaternary volcanoes of the Greater Caucasus based on geochronological, volcanological and isotope-geochemical data, J. Volcanol. Seismol., 2014, vol. 8, no. 2, pp. 93–107.

    Article  Google Scholar 

  • Maniar, P.D. and Piccoli, P.M., Tectonic discrimination of granitoids, Geol. Soc. Am. Bull., 1989, vol. 101, pp. 635–643.

    Article  Google Scholar 

  • Middlemost, E.A.K., Magmas and Magmatic Rocks. An Introduction to Igneous Petrology, London–New York: Longman, 1985.

    Google Scholar 

  • Pecerillo, A. and Taylor, S.R., Geochemistry of Eocene calcalkaline volcanic rocks from Kastamonu area, northern Turkey, Contrib. Mineral. Petrol., 1976, vol. 58, pp. 63–81.

    Article  Google Scholar 

  • Pohl, I.R., Hess, Yu.S., Kober, B., et al., Origin and genesis of the Miocene trachyrhyolites (A-type) from the northern Greater Caucasus, in Magmatizm riftov i skladchatykh oblastei (Magmatism of Rifts and Folded Areas), Moscow: Nauka, 1993, pp. 108–125.

    Google Scholar 

  • Shempelev, A.G., Prutskii, N.I., Kukhmazov, S.U., et al., Materials of geophysical studies along the near-Elbrus profile (Elbrus volcano–Caucasian Mineral Waters), in Tektonika zemnoi kory i mantii. Tektonicheskie zakonomernosti razmeshcheniya poleznykh iskopaemykh: Materialy 38 Tektonicheskogo soveshchaniya (Tectonics of the Earth’s Crust and Mantle. Tectonic Control of the Distribution of Mineral Resources. Proceedings of the 38th Tectonic Conference), Moscow: GIN RAN, 2005, vol. 2, pp. 361–365.

    Google Scholar 

  • Sobolev, R.N. and Kononov, O.V., New data on the stages of the formation of the Eldzhurtu granite massif, North Caucasus, Dokl. Akad. Nauk, 1993, vol. 330, no. 3, pp. 360–362.

    Google Scholar 

  • Steiger, R.H. and Jager, E., Subcomission on geochronology: convention on the use of decay constants in geoand cosmochronology, Earth Planet. Sci. Lett., 1977, no. 36, pp. 359–362.

    Article  Google Scholar 

  • Togonidze, M.G. and Dudauri, O.Z., Pliocene volcanic center on the southern slope of the Greater Caucasus within the limits of Upper Racha, Tr. Inst. Geol. Gruzii, Novaya Ser., 2008, no. 124, pp. 232–237.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Lebedev.

Additional information

Original Russian Text © V.A. Lebedev, O.Z. Dudauri, M.G. Togonidze, Yu.V. Gol’tsman, 2016, published in Petrologiya, 2016, Vol. 24, No. 4, pp. 339–362.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, V.A., Dudauri, O.Z., Togonidze, M.G. et al. The age of young intrusions of Tsana Complex (Greater Caucasus) and isotope-geochemical evidence for their origin from hybrid magmas. Petrology 24, 315–335 (2016). https://doi.org/10.1134/S0869591116040032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591116040032

Navigation