Skip to main content
Log in

Continuity of nonlinear eigenvalues in \({{\mathrm{CD}}}(K,\infty )\) spaces with respect to measured Gromov–Hausdorff convergence

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this note we prove in the nonlinear setting of \({{\mathrm{CD}}}(K,\infty )\) spaces the stability of the Krasnoselskii spectrum of the Laplace operator \(-\,\Delta \) under measured Gromov–Hausdorff convergence, under an additional compactness assumption satisfied, for instance, by sequences of \({{\mathrm{CD}}}^*(K,N)\) metric measure spaces with uniformly bounded diameter. Additionally, we show that every element \(\lambda \) in the Krasnoselskii spectrum is indeed an eigenvalue, namely there exists a nontrivial u satisfying the eigenvalue equation \(-\, \Delta u = \lambda u\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2005)

    MATH  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. 195(2), 289–391 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J. 163(7), 1405–1490 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Mondino, A., Savaré, G.: Nonlinear diffusion equations and curvature conditions in metric measure spaces. Mem. AMS (2015) (to appear)

  5. Ambrosio, L., Honda, S.: New stability results for sequences of metric measure spaces with uniform Ricci bounds from below In: Measure theory in non-smooth spaces. pp. 1–51, De Gruyter Open, Warsaw (2017)

  6. Ambrosio, L., Stra, F., Trevisan, D.: Weak and strong convergence of derivations and stability of flows with respect to MGH convergence. J. Funct. Anal. 272(3), 1182–1229 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, North-Holland Mathematics Studies, No. 5. Notas de Matemática (50) (1973)

  8. Bacher, K., Sturm, K.-T.: Localization and tensorization properties of the curvature-dimension condition for metric measure spaces. J. Funct. Anal. 259(1), 28–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below III. J. Differ. Geom. 54(1), 37–74 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fukaya, K.: Collapsing of Riemannian manifolds and eigenvalues of Laplace operator. Invent. Math. 87(3), 517–547 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gigli, N.: On the differential structure of metric measure spaces and applications. Mem. Am. Math. Soc. 236(1113), vi+91 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Gigli, N., Mondino, A., Savaré, G.: Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows. Proc. Lond. Math. Soc. (3) 111(5), 1071–1129 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Gromov, M.: Dimension, nonlinear spectra and width. In: Lindenstrauss, J., Milman, VD. (eds) Geometric Aspects of Functional Analysis (1986/87), Volume 1317 of Lecture Notes in Mathematics, pp. 132–184. Springer, Berlin (1988) https://doi.org/10.1007/BFb0081739

  14. Hempel, J.A.: Multiple solutions for a class of nonlinear boundary value problems. Indiana Univ. Math. J. 20:983–996 (1970/1971)

  15. Honda, S.: Ricci curvature and \(L^p\)-convergence. J. Reine Angew. Math. 705, 85–154 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Krasnoselskii, M.A.: Topological methods in the theory of nonlinear integral equations. Translated by Armstrong, A.H.; translation edited by Burlak, J. A Pergamon Press Book. The Macmillan Co., New York (1964)

  17. Lusternik, L., Schnirelmann, L.: Sur le problème de trois géodésiques fermées sur les surfaces de genre 0. C. R. Acad. Sci. Paris 189, 269–271 (1929)

    MATH  Google Scholar 

  18. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169(3), 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pitts, J.T.: Existence and Regularity of Minimal Surfaces on Riemannian Manifolds, Volume 27 of Mathematical Notes. Princeton University Press, University of Tokyo Press, Princeton, Tokyo (1981)

    Book  Google Scholar 

  20. Pratelli, A.: On the equality between Monge’s infimum and Kantorovich’s minimum in optimal mass transportation. Ann. Inst. H. Poincaré Probab. Statist. 43(1), 1–13 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rabinowitz, P.H.: Some aspects of nonlinear eigenvalue problems. Rocky Mt. J. Math. 3:161–202 (1973). In: Rocky Mountain Consortium Symposium on Nonlinear Eigenvalue Problems (Santa Fe, N.M., 1971)

  22. Rajala, T.: Local Poincaré inequalities from stable curvature conditions on metric spaces. Calc. Var. Partial Differ. Equ. 44(3–4), 477–494 (2012)

    Article  MATH  Google Scholar 

  23. Shen, Z.: The non-linear Laplacian for Finsler manifolds. In: Antonelli, P.L., Lackey, B.C. (eds) The Theory of Finslerian Laplacians and Applications, Volume 459 of Mathematical Applications, pp. 187–198. Kluwer Academic Publishers, Dordrecht (1998) https://doi.org/10.1007/978-94-011-5282-2_12

  24. Struwe, M.: Variational methods, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, fourth edition, Applications to nonlinear partial differential equations and Hamiltonian systems (2008)

  25. Sturm, K.-T.: On the geometry of metric measure spaces I. Acta Math. 196(1), 65–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sturm, K.-T.: On the geometry of metric measure spaces II. Acta Math. 196(1), 133–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Szulkin, A.: Ljusternik-Schnirelmann theory on \({ C}^1\)-manifolds. Ann. Inst. H. Poincaré Anal. Non Linéaire 5(2), 119–139 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the support of the MIUR PRIN 2015 grant. The second author acknowledges the support of the JSPS Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers, the Grantin-Aid for Young Scientists (B) 16K17585 and the warm hospitality of SNS. The third author thanks Mark Peletier, Georg Prokert and Oliver Tse for helpful discussions and the SNS for its hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Ambrosio.

Additional information

Communicated by M. Struwe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrosio, L., Honda, S. & Portegies, J.W. Continuity of nonlinear eigenvalues in \({{\mathrm{CD}}}(K,\infty )\) spaces with respect to measured Gromov–Hausdorff convergence. Calc. Var. 57, 34 (2018). https://doi.org/10.1007/s00526-018-1315-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1315-0

Mathematics Subject Classification

Navigation