Skip to main content

Advertisement

Log in

Spatial prediction of landslide susceptibility in Taleghan basin, Iran

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Identifying landslide-susceptible zones is warranted to prevent and mitigate associated hazards in mountainous regions, where a landslide is a destructive type of erosion. A landslide susceptibility map was developed for the Taleghan basin based on frequency ratio (FR), logistic regression (LR), maximum entropy (MaxEnt), and support vector machine (SVM) with radial base (RBF), sigmoid (SIG), linear (LN), and polynomial (PL) kernel functions. To this end, an inventory map with 166 landslide locations was prepared and partitioned into 70% and 30% to train and validate the models, respectively. Subsequently, the models were designed based on 13 factors including elevation, slope degree, slope aspect, distance to stream, Stream Power Index, Topographic Wetness Index, Stream Transport Index, distance to fault, lithology, soil texture, land use, distance to road and precipitation. The performance of the methods was assessed using the area under the receiver operating characteristic curve, the Seed Cell Area Index (SCAI), the precision index (P). Moreover, statistical measures including sensitivity, specificity, and accuracy were calculated. Friedman test was also applied to confirm significant statistical differences among the seven models employed in this research. The validation results showed that MaxEnt had the maximum area under the curve (0.812). The results obtained using the models LR, FR, PL-SVM, SIG-SVM, LN-SVM, and RBF-SVM were 0.807, 0.732, 0.679, 0.663, 0.643 and 0.660, respectively. The obtained P index showed the better performance of MaxEnt and LR models. Moreover, the trend of changes in the SCAI values, from low- to high-susceptibility, indicated that the MaxEnt and LR models had the best performance. Decision makers can effectively use the findings of the present study to mitigate the financial and human costs resulting from the landslides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abul Hasanat M, Ramachandram D, Mandava R (2010) Bayesian belief network learning algorithms for modeling contextual relationships in natural imagery a comparative study. Artif Intell Rev 34(4):1–18

    Article  Google Scholar 

  • Akgun A, Sezer EA, Nefesliogl HA, Gokceoglu C, Pradhan B (2012) An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Comput Geosci 38:23–34

    Article  Google Scholar 

  • Armas I, Stroia F, Giurgea L (2013) Statistic versus deterministic method for landslide susceptibility mapping. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice. Springer, Berlin

    Google Scholar 

  • Atkinson PM, Massari R (1998) Generalized linear modelling of landslide susceptibility in the central Apennines, Italy. Comput Geosci 24(4):373–385

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda–Yahiko Mountains, Central Japan. Geomorphology 65(1–2):15–31

    Article  Google Scholar 

  • Ballabio C, Sterlacchini S (2012) Support Vector machines for landslide susceptibility mapping: the Staffora River Basin case study. Italy Math Geosci 44(1):47–70

    Article  Google Scholar 

  • Brenning A, Schwinn M, Ruiz-Páez AP, Muenchow J (2015) Landslide susceptibility near highways is increased by 1 order of magnitude in the Andes of southern Ecuador, Loja province. Nat Hazards Earth Syst Sci 15(1):45–57

    Article  Google Scholar 

  • Bui DT, Pradhan B, Lofman O, Revhaug I, Dick OB (2012) Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): a comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. CATENA 96:28–40

    Article  Google Scholar 

  • Calvello M, Ciurleo M (2016) Optimal use of thematic maps for landslide susceptibility assessment by means of statistical analyses: case study of shallow landslides in fine grained soils. In: Aversa S, Cascini L, Picarelli L, Scavia C (eds) Landslides and engineered slopes. Experience, theory and practice. CRC Press, Boca Raton, FL, pp 537–544

    Google Scholar 

  • Can A, Dagdelenler G, Ercanoglu M, Sonmez H (2017) Landslide susceptibility mapping at Ovacık–Karabük (Turkey) using different artificial neural network models: comparison of training algorithms. Bull Eng Geol Environ. https://doi.org/10.1007/s10064-017-1034-3

    Article  Google Scholar 

  • Cao B, Bai C, Zhang L, Li G, Mao M (2016) Modeling habitat distribution of Cornus officinalis with Maxent modeling and fuzzy logics in China. Plant Ecol 9(6):742–751

    Article  Google Scholar 

  • Capitani M, Ribolini A, Bini M (2013) The slope aspect: A predisposing factor for landsliding? CR Geosci 345(11–12):427–438

    Article  Google Scholar 

  • Catani F, Lagomarsino D, Segoni S, Tofani V (2013) Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Nat Hazards Earth Syst Sci 13(11):2815–2831

    Article  Google Scholar 

  • Cerri RI, Reis FA, Gramani MF, Giordano LC, Zaine JE (2017) Landslides zonation hazard: relation between geological structures and landslides occurrence in hilly tropical regions of Brazil. An Acad Bras Ciênc 89(4):2609–2623

    Article  Google Scholar 

  • Cervi F, Berti M, Borgatti L, Roncheti F, Manenti F, Corsini A (2010) Comparing predictive capability of statistical and deterministic methods for landslid susceptibility mapping: a case study in the northern Apennines (Reggio Emili: province, Italy). Landslides 7(4):433–444

    Article  Google Scholar 

  • Chen XL, Liu CG, Chang ZF, Zhou Q (2016) The relationship between the slope angle and the landslide size derived from limit equilibrium simulations. Geomorphology 253:547–550

    Article  Google Scholar 

  • Chen W, Xie X, Peng J, Wang J, Duan Z, Hong H (2017a) GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naïve-Bayes tree, and alternating decision tree models. Geomat Nat Hazards Risk 8(2):950–973

    Article  Google Scholar 

  • Chen W, Xie X, Wang J, Pradhan B, Hong H, Tien Bui D, Duan Z, Ma J (2017b) A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA 151:147–160

    Article  Google Scholar 

  • Chen W, Peng J, Hong H, Shahabi H, Pradhan B, Liu J, Duan Z (2018) Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Sci Total Environ 626:1121–1135

    Article  CAS  Google Scholar 

  • Christianini N, Shawe Taylor J (2000) An introduction to support vector machines. Cambridge University Press, ISBN: 0521780195

  • Conforti M, Muto F, Rago V, Critelli S (2014) Landslide inventory map of north-eastern Calabria (South Italy). J Maps 10(1):90–102

    Article  Google Scholar 

  • Cornforth DH (2005) Landslides in practice. Wiley, Hoboken, p 591

    Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Google Scholar 

  • Dai FC, Lee CF, Li J, Xu ZW (2001) Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ Geol 40(3):381–391

    Article  Google Scholar 

  • Davoodi MH, Shariatmadari N, Samimi M (2003) Barikan landslide investigation. Int J Eng Sci 14(2):161–174 (in Persian)

    Google Scholar 

  • Devkota KC, Regmi AD, Pourghasemi HR, Yoshida K, Pradhan B, Ryu IC, Dhital MR, Althuwaynee OF (2013) Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Nat Hazards 65(1):135–165

    Article  Google Scholar 

  • Ding Q, Chen W, Hong H (2017) Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping. Geocarto Int 32(6):619–639

    Google Scholar 

  • Dou J, Oguchi T, Hayakawa YS, Uchiyama S, Saito H, Paudel U (2014) GIS-based landslide susceptibility mapping using a certainty factor model and its validation in the Chuetsu Area, Central Japan. In: Landslide science for a safer geoenvironment. Springer, pp 419–424

  • Eitrich T, Lang B (2006) Efficient optimization of support vector machine learning parameters for unbalanced datasets. Comput Appl Math 196(2):425–436

    Article  Google Scholar 

  • Erener A, Sivas AA, Selcuk-Kestel AS, Düzgün HS (2017) Analysis of training sample selection strategies for regression-based quantitative landslide susceptibility mapping methods. Comput Geosci 104:62–74

    Article  Google Scholar 

  • Fan W, Wei XS, Cao YB, Zheng B (2017) Landslide susceptibility assessment using the certainty factor and analytic hierarchy process. J Mt Sci 14(5):906–925

    Article  Google Scholar 

  • Feizizadeh B, Shadman Roodposhti M, Jankowski P, Blaschke T (2014) A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping. Comput Geosci 73:208–221

    Article  Google Scholar 

  • Felicísimo ÁM, Cuartero A, Remondo J, Quirós E (2013) Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides 10(2):175–189

    Article  Google Scholar 

  • Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32:675–701

    Article  Google Scholar 

  • García-Rodríguez MJ, Malpica JA, Benito B, Díaz M (2008) Susceptibility assessment of earthquake-triggered landslides in El Salvador using logistic regression. Geomorphology 95(3–4):172–191

    Article  Google Scholar 

  • Ghayoumian J, Fatemi Aghda SM, Ataee O, Davoudi MH, Norouzi AA (2007) Determination of optimal policy making regarding the landslides around villages using DSS, case study Barikan landslide. Geosciences 17(65):2–17 (in Persian)

    Google Scholar 

  • Giannecchini R (2006) Relationship between rainfall and shallow landslides in the southern Apuan Alps (Italy). Nat Hazards Earth Syst Sci 6(3):357–364

    Article  Google Scholar 

  • Henriques C, Zêzere JL, Marques F (2015) The role of the lithological setting on the landslide pattern and distribution. Eng Geol 189:17–31

    Article  Google Scholar 

  • Hernandez PA, Franke I, Herzog SK, Pacheco V, Paniagua L, Quintana HL, Vargas J (2008) Predicting species distributions in poorly-studied landscapes. Biodivers Conserv 17(6):1353–1366

    Article  Google Scholar 

  • Ho JY, Lee KT, Chang TC, Wang ZY, Liao YH (2012) Influences of spatial distribution of soil thickness on shallow landslide prediction. Eng Geol 124:38–46

    Article  Google Scholar 

  • Hong Y, Adler R, Huffman G (2007) Use of satellite remote sensing data in the mapping of global landslide susceptibility. Nat Hazards 43(2):245–256

    Article  Google Scholar 

  • Hong H, Naghibi SA, Pourghasemi HR, Pradhan B (2016a) GIS-based landslide spatial modeling in Ganzhou City, China. Arab J Geosci 9(2):112

    Article  Google Scholar 

  • Hong H, Pradhan B, Jebur MN, Bui DT, Xu C, Akgun A (2016b) Spatial prediction of landslide hazard at the Luxi area (China) using support vector machines. Environ Earth Sci 75(1):40–54

    Article  Google Scholar 

  • Hong H, Pradhan B, Sameen MI, Chen W, Xu C (2017) Spatial prediction of rotational landslide using geographically weighted regression, logistic regression, and support vector machine models in Xing Guo area (China), Geomatics. Nat Hazards Risk 8(2):1997–2022

    Article  Google Scholar 

  • Hong H, Shahabi H, Shirzadi A, Chen W, Chapi K, Ahmad BB, Bui DT, Shadman Roodposhti M, Yari Hesar A, Tian Y, Tien Bui D (2019) Landslide susceptibility assessment at the Wuning area, China: a comparison between multi-criteria decision making, bivariate statistical and machine learning methods. Nat Hazards 96(1):173–212

    Article  Google Scholar 

  • Hosseini M, Aqeel Ashraf M (2015) Application of the SWAT model for water components separation in Iran. Springer, Berlin

    Book  Google Scholar 

  • Huang Y, Zhao L (2018) Review on landslide susceptibility mapping using support vector machines. CATENA 165:520–529

    Article  Google Scholar 

  • Jaafari A, Najafi A, Pourghasemi HR, Rezaeian J, Sattarian A (2014) GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. Int J Environ Sci Technol 11:909–926

    Article  Google Scholar 

  • Jacobs L, Dewitte O, Poesen J, Sekajugo J, Nobile A, Rossi M, Kervyn M (2018) Field-based landslide susceptibility assessment in a data-scarce environment: the populated areas of the Rwenzori Mountains. Nat Hazards Earth Syst Sci 18(1):105–124

    Article  Google Scholar 

  • Jebur MN, Pradhan B, Tehrany MS (2014) Optimization of landslide causative factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote Sens Environ 152:150–165

    Article  Google Scholar 

  • Kalantar B, Pradhan B, Naghibi SA, Motevalli A, Mansor S (2018) Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomat Nat Hazards Risk 9(1):49–69

    Article  Google Scholar 

  • Kavzoglu T, Sahin EK, Colkesen I (2015) An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district. Nat Hazards 76:471–496

    Article  Google Scholar 

  • Kawabata D, Bandibas J (2009) Landslide susceptibility mapping using geological data, a DEM from ASTER images and an artificial neural network (ANN). Geomorphology 113(1–2):97–109

    Article  Google Scholar 

  • Kıncal C, Akgun A, Koca Y (2009) Landslide susceptibility assessment in the Izmir (West Anatolia, Turkey) city center and its near vicinity by the logistic regression method. Environ Earth Sci 59(4):745–756

    Article  Google Scholar 

  • Kornejady A, Ownegh M, Bahremand A (2017) Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. CATENA 152:144–162

    Article  Google Scholar 

  • Lagomarsino D, Tofani V, Segoni S, Catani F, Casagli N (2017) A tool for classification and regression using random forest methodology: applications to landslide susceptibility mapping and soil thickness modeling. Environ Model Assess 22(3):201–214

    Article  Google Scholar 

  • Lee S, Min K (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol 40(9):1095–1113

    Article  Google Scholar 

  • Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4(1):33–34

    Article  Google Scholar 

  • Lee MJ, Park I, Lee S (2015) Forecasting and validation of landslide susceptibility using an integration of frequency ratio and neuro-fuzzy models: a case study of Seorak mountain area in Korea. Environ Earth Sci 74(1):413–429

    Article  Google Scholar 

  • Li XJ, Chen YN, Ouyang H (2002) Analysis on sand disaster with disaster entropy method. Arid Land Geogr 25(4):350–353

    CAS  Google Scholar 

  • Li C, Tang H, Ge Y, Hu X, Wang L (2014) Application of back-propagation neural network on bank destruction forecasting for accumulative landslides in the three Gorges Reservoir Region, China. Stoch Environ Res Risk Assess 28(6):1465–1477

    Article  Google Scholar 

  • Li Langping, Lan H, Guo C, Zhang Y, Li Q, Wu Y (2017) A modified frequency ratio method for landslide susceptibility assessment. Landslides 14(2):727–741

    Article  Google Scholar 

  • Lian C, Zeng Z, Yao W, Tang H (2014) Extreme learning machine for the displacement prediction of landslide under rainfall and reservoir level. Stoch Environ Res Risk Assess 28(8):1957–1972

    Article  Google Scholar 

  • Lin Y (2013) A comparison study on natural and head/tail breaks involving digital elevation models. Dissertation, University of Gävle, Sweden

  • Lombardo L, Cama M, Märker M, Rotigliano E (2014) A test of transferability for landslides susceptibility models under extreme climatic events: application to the Messina 2009 disaster. Nat Hazards 74(3):1951–1989

    Article  Google Scholar 

  • Magliulo P, Di Lisio A, Russo F, Zelano A (2008) Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: a case study in southern Italy. Nat Hazards 47(3):411–435

    Article  Google Scholar 

  • Mahalingam R, Olsen MJ, O’Banion MS (2016) Evaluation of landslide susceptibility mapping techniques using lidar-derived conditioning factors (Oregon case study). Geomat Nat Hazards Risk 7(6):1884–1907

    Article  Google Scholar 

  • Maleki A, Oveisi M (2012) Identification of fault structure and development of karst springs using GPR (case study: Kermanshah province). Geogr Environ Sustain 2:1–10

    Google Scholar 

  • Memarian H (2014) Engineering geology and geotechnic. University of Tehran Press, Tehran (in Persian)

    Google Scholar 

  • Moore ID, Burch GJ (1986) Sediment transport capacity of sheet and rill flow: application of unit stream power theory. Water Res Res 22(8):1350–1360

    Article  Google Scholar 

  • Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modeling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5(1):3–30

    Article  Google Scholar 

  • Moteashari A, Qomi J, Eftekhari A, Puzesh B, Shahmari M (2012) Landslide hazard zoning of the Tehran–Chalus road and the highway under construction. Appl Geol 8:147–158

    Google Scholar 

  • Nefeslioglu HA, Gokceoglu C, Sonmez H (2008) An assessment on the use of logistic regression and artificial neural netwoks with different sampling strategies for the preparation of landslide susceptibility maps. Eng Geol 97(3–4):171–191

    Article  Google Scholar 

  • Nolasco-Javier D, Kumar L, Tengonciang AMP (2015) Rapid appraisal of rainfall threshold and selected landslides in Baguio, Philippines. Nat Hazards 78(3):1587–1607

    Article  Google Scholar 

  • Oh HJ, Kadavi PR, Lee CW, Lee S (2018) Evaluation of landslide susceptibility mapping by evidential belief function, logistic regression and support vector machine models. Geomat Nat Hazards Risk 9(1):1053–1070

    Article  Google Scholar 

  • Ozdemir A, Altural T (2013) A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. J Asian Earth Sci 64:180–197

    Article  Google Scholar 

  • Pandey VK, Pourghasemi HR, Sharma MC (2018) Landslide susceptibility mapping using maximum entropy and support vector machine models along the Highway Corridor, Garhwal Himalaya. Geocarto Int. https://doi.org/10.1080/10106049.2018.1510038

    Article  Google Scholar 

  • Park S, Choi C, Kim B, Kim J (2013) Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ Earth Sci 68(5):1443–1464

    Article  Google Scholar 

  • Patriche CV, Pirnau R, Grozavu A, Rosca B (2016) A comparative analysis of binary logistic regression and analytical hierarchy process for landslide susceptibility assessment in the Dobrov River Basin, Romania. Pedosphere 26(3):335–350

    Article  Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34(1):102–117

    Article  Google Scholar 

  • Pham BT, Prakash I (2018) Machine learning methods of kernel logistic regression and classification and regression trees for landslide susceptibility assessment at part of Himalayan Area, India. Indian J Sci Technol 11(12):1–10

    Article  Google Scholar 

  • Pham BT, Tien Bui D, Pourghasemi HR, Indra P, Dholakia MB (2015) Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods. Theor Appl Climatol 128(1–2):255–273

    Google Scholar 

  • Pourghasemi HR, Mohammady M, Pradhan B (2012) Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena 97:71–84

    Article  Google Scholar 

  • Pradhan B (2010) Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia. Adv Space Res 45(10):1244–1256

    Article  CAS  Google Scholar 

  • Pradhan B (2011) An assessment of the use of an advanced neural network model with five different training strategies for the preparation of landslide susceptibility maps. J Data Sci 9(1):65–81

    Google Scholar 

  • Pradhan B, Lee S (2010) Landslide susceptibility assessment and factor effect analysis: back-propagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling. Environ Model Softw 25(6):747–759

    Article  Google Scholar 

  • Qiu H, Cui P, Regmi AD, Wang Y, Hu S (2017) Slope height and slope gradient controls on the loess slide size within different slip surfaces. Phys Geogr 38(4):303–317

    Article  Google Scholar 

  • Quinn SA, Gibbs JP, Hall MH, Petokas PJ (2013) Multiscale factors influencing distribution of the eastern hellbender salamander (Cryptobranchus alleganiensis alleganiensis) in the northern segment of its range. Herpetol 47(1):78–84

    Article  Google Scholar 

  • Raja NB, Çiçek I, Türkoğlu N, Aydin O, Kawasaki A (2016) Landslide susceptibility mapping of the Sera River Basin using logistic regression model. Nat Hazards 85(3):1323–1346

    Article  Google Scholar 

  • Regmi NR, Giardino JR, Vitek JD (2010) Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology 115(1–2):1285–1293

    Google Scholar 

  • Regmi AD, Yoshida K, Pradhan B, Pourghasemi HR, Khumamoto T, Akgun A (2013) Application of frequency ratio, statistical index and weights-of-evidence models, and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab J Geosci 7(2):725–742

    Article  Google Scholar 

  • Riaz MT, Basharat M, Hameed N, Shafique M, Luo J (2018) A data-driven approach to landslide-susceptibility mapping in mountainous terrain: case study from the Northwest Himalayas, Pakistan. Nat Hazards Rev 19(4):05018007

    Article  Google Scholar 

  • Rostami ZA, Al-modaresi SA, Fathizad H, Faramarzi M (2016) Landslide susceptibility mapping by using fuzzy logic: a case study of Cham-gardalan catchment, Ilam, Iran. Arab J Geosci 9:685–696

    Article  Google Scholar 

  • Rotigliano E, Agnesi V, Cappadonia C, Conoscenti C (2011) The role of the diagnostic areas in the assessment of landslide susceptibility models: a test in the sicilian chain. Nat Hazards 58(3):981–999

    Article  Google Scholar 

  • Runtuh MKPKT, Simon N, De Roiste MAIREAD, Crozier M, Rafek AG (2017) Representing landslides as polygon (areal) or points? How different data types influence the accuracy of landslide susceptibility maps. Sains Malays 46(1):27–34

    Article  Google Scholar 

  • Samui P (2008) Slope stability analysis: a support vector machine approach. Environ Geol 56(2):255–267

    Article  Google Scholar 

  • San BT (2014) An evaluation of SVM using polygon-based random sampling in landslide susceptibility mapping: the Candir catchment area (western Antalya, Turkey). Int J Appl Earth Obs Geoinf 26(1):399–412

    Article  Google Scholar 

  • Schleier M, Bi R, Rohn J, Ehret D, Xiang W (2014) Robust landslide susceptibility analysis by combination of frequency ratio, heuristic GIS-methods and ground truth evaluation for a mountainous study area with poor data availability in the Three Gorges Reservoir area, PR China. Environ Earth Sci 71(7):3007–3023

    Article  Google Scholar 

  • Segoni S, Rossi G, Catani F (2012) Improving basin-scale shallow landslides modelling using reliable soil thickness maps. Nat Hazards 61(1):85–101

    Article  Google Scholar 

  • Shadman Roodposhti M, Aryal J, Shahabi H, Safarrad T (2016) Fuzzy Shannon entropy: a hybrid GIS-based landslide susceptibility mapping method. Entropy 18(10):343

    Article  Google Scholar 

  • Shirzadi A, Chapi K, Shahabi H, Solaimani K, Kavian A, Ahmad BB (2017) Rock fall susceptibility assessment along a mountainous road: an evaluation of bivariate statistic, analytical hierarchy process and frequency ratio. Environ Earth Sci 76(4):152

    Article  Google Scholar 

  • Skilodimou H, Bathrellos G, Koskeridou E, Soukis K, Rozos D (2018) Physical and anthropogenic factors related to landslide activity in the Northern Peloponnese, Greece. Land 7(3):85

    Article  Google Scholar 

  • Soil conservation and watershed research institute report (2001) Landslides stabilization methods project (Barikan Landslide Project), 85p. (in Persian)

  • Stanley T, Kirschbaum DB (2017) A heuristic approach to global landslide susceptibility mapping. Nat Hazards 87(1):145–164

    Article  Google Scholar 

  • Su Q, Zhang J, Zhao S, Wang L, Liu J, Guo J (2017a) Comparative assessment of three nonlinear approaches for landslide susceptibility mapping in a coal mine area. ISPRS Int J Geo Inf 6(7):228

    Article  Google Scholar 

  • Su L, Hu K, Zhang W, Wang J, Lei Y, Zhang C, Cui P, Pasuto A, Zheng Q (2017b) Characteristics and triggering mechanism of Xinmo landslide on 24 June 2017 in Sichuan, China. J Mt Sci 14:1689–1700

    Article  Google Scholar 

  • Sun X, Chen J, Bao Y, Han X, Zhan J, Peng W (2018) Landslide susceptibility mapping using logistic regression analysis along the jinsha river and its tributaries close to Derong and Deqin County, Southwestern China. ISPRS Int J Geo Inf 7(11):438

    Article  Google Scholar 

  • Süzen ML, Doyuran V (2004) A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45(5):665–679

    Article  Google Scholar 

  • Taalab K, Cheng T, Zhang Y (2018) Mapping landslide susceptibility and types using Random Forest. Big Earth Data. https://doi.org/10.1080/20964471.2018.1472392

    Article  Google Scholar 

  • Tien Bui D, Lofman O, Revhaug I, Dick O (2011) Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Nat Hazards 59(3):1413–1444

    Article  Google Scholar 

  • Tien Bui D, Pradhan B, Lofman O, Revhaug I (2012) Landslide susceptibility assessment in vietnam using support vector machines, decision tree, and Naive Bayes models. Math Probl Eng. https://doi.org/10.1155/2012/974638

    Article  Google Scholar 

  • Tien Bui D, Tuan TA, Klempe H, Pradhan B, Revhaug I (2015) Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 13:361–378

    Article  Google Scholar 

  • Tien Bui D, Anh Tuan T, Klempe H, Pradhan B, Revhaug I (2016) Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 13(2):361–378

    Article  Google Scholar 

  • Torizin J (2015) Elimination of informational redundancy in the weight of evidence method: an application to landslide susceptibility assessment. Stoch Environ Res Risk Assess 30(2):635–651

    Article  Google Scholar 

  • Torkashvand AM, Irani A, Sorur J (2014) The preparation of landslide map by landslide numerical risk factor (LNRF) model and geographic information system (GIS). Egypt J Remote Sens Space Sci 17(2):159–170

    Google Scholar 

  • USDA (1972) Sediment sources, yields, and delivery ratios. National Engineering Handbook, Section 3 Sedimentation

  • Vakhshoori V, Zare M (2016) Landslide susceptibility mapping by comparing weight of evidence, fuzzy logic, and frequency ratio methods. Geomat Nat Hazards Risk 7(5):1731–1752

    Article  Google Scholar 

  • Van Westen CJ (2002) Use of weights of evidence modeling for landslide susceptibility mapping. International Institute for Geoinformation Science and Earth Observation, Enschede, p 21

    Google Scholar 

  • Vapnik VN (1995) The nature of statistical learning theory. Springer, New York, p 400

    Book  Google Scholar 

  • Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. UNESCO Press, Paris, p 176

    Google Scholar 

  • Vedat AVCİ, Sunkar M (2018) The relationship of landslides with lithological units and fault lines occurring on the east ANATOLIAN fault zone, between Palu (ELAZIĞ) and BİNGÖL, Turkey. Bull Min Res Exp 157:23–38

    Google Scholar 

  • Wang J, Guo M, Sawada K, Lina J, Zhanga J (2015) Landslide susceptibility mapping in Mizunami City, Japan: a comparison between logistic regression, bivariate statistical analysis and multivariate adaptive regression spline models. CATENA 135:271–282

    Article  Google Scholar 

  • Wang LJ, Guo M, Sawada K, Lin J, Zhang J (2016) A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network. Geosci J 20(1):117–136

    Article  Google Scholar 

  • Wu Z, Wu Y, Yang Y, Chen F, Zhang N, Ke Y, Li W (2017) A comparative study on the landslide susceptibility mapping using logistic regression and statistical index models. Arab J Geosci 10(8):187–204

    Article  Google Scholar 

  • Xu C, Xu X, Lee YH, Tan X, Yu G, Dai F (2012) The 2010 Yushu earthquake triggered landslide hazard mapping using GIS and weight of evidence modeling. Environ Earth Sci 66(6):1603–1616

    Article  Google Scholar 

  • Xu C, Shen L, Wang G (2016) Soft computing in assessment of earthquake-triggered landslide susceptibility. Environ Earth Sci 75(9):1–17

    Google Scholar 

  • Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. CATENA 72(1):1–12

    Article  Google Scholar 

  • Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 85(3):274–287

    Article  Google Scholar 

  • Yi CX, Shi PJ (1994) Entropy production and natural hazard. J Beijing Norm Univ 30(2):276–280

    Google Scholar 

  • Yilmaz I (2009) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat—Turkey). Comput Geosci 35(6):1125–1138

    Article  Google Scholar 

  • Yiping W, Cong C, Gaofeng H, Qiuxia Z (2014) Landslide stability analysis based on random-fuzzy reliability: taking Liangshuijing landslide as a case. Stoch Environ Res Risk Assess 28(7):1723–1732

    Article  Google Scholar 

  • Youssef AM, Al-Kathery M, Pradhan B (2015) Landslide susceptibility mapping at Al-Hasher Area, Jizan (Saudi Arabia) using GIS-based frequency ratio and index of entropy models. Geosciences 19(1):113–134

    Article  Google Scholar 

  • Youssef AM, Pourghasemi HR, Pourtaghi ZS, Al-Katheeri MM (2016) Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 13(5):839–856

    Article  Google Scholar 

  • Zêzere JL, Pereira S, Melo R, Oliveira SC, Garcia RAC (2017) Mapping landslide susceptibility using data-driven methods. Sci Total Environ 589(1):250–267

    Article  CAS  Google Scholar 

  • Zhang K, Wu X, Niu R, Yang K, Zhao L (2017) The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area, China. Environ Earth Sci 76(11):405. https://doi.org/10.1007/s12665-017-6731-5

    Article  Google Scholar 

  • Zhang T, Han L, Chen W, Shahabi H (2018) Hybrid integration approach of entropy with logistic regression and support vector machine for landslide susceptibility modeling. Entropy 20(11):884

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Mokhtari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtari, M., Abedian, S. Spatial prediction of landslide susceptibility in Taleghan basin, Iran. Stoch Environ Res Risk Assess 33, 1297–1325 (2019). https://doi.org/10.1007/s00477-019-01696-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-019-01696-w

Keywords

Navigation