Skip to main content
Log in

Probabilistic evaluation of the physical impact of future tephra fallout events for the Island of Vulcano, Italy

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

A first probabilistic scenario-based hazard assessment for tephra fallout is presented for La Fossa volcano (Vulcano Island, Italy) and subsequently used to assess the impact on the built environment. Eruption scenarios are based upon the stratigraphy produced by the last 1000 years of activity at Vulcano and include long–lasting Vulcanian and sub-Plinian eruptions. A new method is proposed to quantify the evolution through time of the hazard associated with pulsatory Vulcanian eruptions lasting from weeks to years, and the increase in hazard related to typical rainfall events around Sicily is also accounted for. The impact assessment on the roofs is performed by combining a field characterization of the buildings with the composite European vulnerability curves for typical roofing stocks. Results show that a sub-Plinian eruption of VEI 2 is not likely to affect buildings, whereas a sub-Plinian eruption of VEI 3 results in 90 % of the building stock having a ≥12 % probability of collapse. The hazard related to long-lasting Vulcanian eruptions evolves through time, and our analysis shows that the town of Il Piano, located downwind of the preferential wind patterns, is likely to reach critical tephra accumulations for roof collapse 5–9 months after the onset of the eruption. If no cleaning measures are taken, half of the building stock has a probability >20 % of suffering roof collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Arnone E, Pumo D, Viola F, Noto LV, La Loggia G (2013) Rainfall statistics changes in Sicily. Hydrol Earth Syst Sci 17(7):2449–2458. doi:10.5194/hess-17-2449-2013

    Article  Google Scholar 

  • Arrighi S, Tanguy JC, Rosi M (2006) Eruptions of the last 2200 years at Vulcano and Vulcanello (Aeolian Islands, Italy) dated by high-accuracy archeomagnetism. Phys Earth Planet Inter 159(3–4):225–233

    Article  Google Scholar 

  • Barberi F, Neri A, Valenza M, Villari L (1991) 1987–1990 unrest at Vulcano. Acta Vulcanologica 1:95–106

    Google Scholar 

  • Bianchi L (2007) Leruzione 1888-1890 di Vulcano (Isole Eolie): Analisi stratigrafica fisica e composizionale dei prodotti. Unpublished msc thesis, Università di Pisa

  • Biass S, Bonadonna C (2013) A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador-Part I: probabilistic hazard assessment. Nat Hazards 65(1):477–495

    Article  Google Scholar 

  • Biass S, Bonadonna C (2014) TOTGS: Total grainsize distribution of tephra fallout. https://vhub.org/resources/3297

  • Biass S, Frischknecht C, Bonadonna C (2013) A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador - Part II: vulnerability and risk assessment. Nat Hazards 65(1):497–521

    Article  Google Scholar 

  • Biass S, Scaini C, Bonadonna C, Folch A, Smith K, Höskuldsson A (2014) A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes - Part 1: Hazard assessment. Nat Hazards Earth Syst Sci 14(8):2265–2287. doi:10.5194/nhess-14-2265-2014

    Article  Google Scholar 

  • Blong R (2003a) A new damage index. Nat Hazards 30:1–23

    Article  Google Scholar 

  • Blong R (2003b) A review of damage intensity scales. Nat Hazards 29:57–76

    Article  Google Scholar 

  • Blong R (2003c) Building damage in Rabaul, Papua New Guinea, 1994. Bull Volcanol 65(1):43–54

    Google Scholar 

  • Blong RJ (1984) Volcanic hazards a sourcebook on the effects of eruptions. Academic Press, Orlando

    Google Scholar 

  • Bonaccorso B, Cancelliere A, Rossi G (2005) Detecting trends of extreme rainfall series in Sicily. Advances in Geosciences 2:7–11

    Article  Google Scholar 

  • Bonadonna C (2006) Probabilistic modelling of tephra dispersion. In: Mader HM, Coles SG, Connor CB, Connor LJ (eds) Statistics in volcanology, Special Publications of IAVCEI, vol 1. Geological Society of London, London, pp 243–259

  • Bonadonna C, Houghton B (2005) Total grain-size distribution and volume of tephra-fall deposits. Bull Volcanol 67(5):441–456

    Article  Google Scholar 

  • Bonadonna C, Macedonio G, Sparks R (2002a) Numerical modelling of tephra fallout associated with dome collapses and Vulcanian explosions: application to hazard assessment on Montserrat. In: Druitt T, Kokelaar B (eds) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999, vol 21. Memoirs of the Geological Society of London, pp 517–537

  • Bonadonna C, Mayberry G, Calder E, Sparks R, Choux C, Jackson P, Lejeune A, Loughlin S, Norton G, Rose WI, Ryan G, Young S (2002b) Numerical modelling of tephra fallout associated with dome collapses and Vulcanian explosions: application to hazard assessment on Montserrat. In: Druitt T, Kokelaar B (eds) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999, vol 21. Memoirs of the Geological Society of London, pp 517–537

  • Bonadonna C, Connor CB, Houghton BF, Connor L, Byrne M, Laing A, Hincks TK (2005) Probabilistic modeling of tephra dispersal: hazard assessment of a multiphase rhyolitic eruption at Tarawera, New Zealand. J Geophys Res 110(10.1029)

  • Bonadonna C, Biass S, Manzella I, Galderisi A, Ceudech A, Ferrara F, Delmonaco G, Menoni S, Minucci G, Belvaux M, Manceau J, Montfort-Climent D, Sabourault P, Foerster E (2011a) Application of an integrated vulnerability conceputal approachm Del. 5.3.3: Development of the Integrated Approach on the Vulcano case study. Tech. Rep. 212045, Ensure project. Tech. rep

  • Bonadonna C, Genco R, Gouhier M, Pistolesi M, Cioni R, Alfano F, Hoskuldsson A, Ripepe M (2011b) Tephra sedimentation during the 2010 Eyjafjallajökull eruption (Iceland) from deposit, radar, and satellite observations. J Geophys Res 116(B12):B12,202

    Article  Google Scholar 

  • Brown R, Bonadonna C, Durant A (2012) A review of volcanic ash aggregation. Physics and Chemistry of the Earth, Parts A/B/C 45–46(0):65–78

    Article  Google Scholar 

  • Brunetti M, Colacino M, Maugeri M, Nanni T (2001) Trends in the daily intensity of precipitation in Italy from 1951 to 1996. Int J Climatol 21(3):299–316

    Article  Google Scholar 

  • Cannarozzo M, Noto L, Viola F (2006) Spatial distribution of rainfall trends in Sicily (1921–2000). Physics and Chemistry of the Earth, Parts A/B/C 31(18):1201–1211. doi:10.1016/j.pce.2006.03.022. http://www.sciencedirect.com/science/article/pii/S1474706506003019

    Article  Google Scholar 

  • Chester DK, Degg M, Duncan AM, Guest JE (2000) The increasing exposure of cities to the effects of volcanic eruptions: a global survey. Global Environmental Change Part B: Environmental Hazards 2(3):89–103

    Article  Google Scholar 

  • Chester DK, Dibben CJ, Duncan AM (2002) Volcanic hazard assessment in western Europe. J Volcanol Geotherm Res 115(3–4):411–435. doi:10.1016/S0377-0273(02)00210-X

    Article  Google Scholar 

  • Chiodini G, Cioni R, Marini L, Panichi C (1995) Origin of the fumarolic fluids of Vulcano Island, Italy and implications for volcanic surveillance. Bull Volcanol 57(2):99–110

    Article  Google Scholar 

  • Connor LJ, Connor CB (2006) Inversion is the key to dispersion: understanding eruption dynamics by inverting tephra fallout. Statistics in volcanology:231

  • Davi M, Rosa R, Donato P, Vetere F, Barca D, Cavallo A (2009) Magmatic evolution and plumbing system of ring-fault volcanism: the Vulcanello Peninsula (Aeolian Islands, Italy). Eur J Mineral 21(5):1009–1028

    Article  Google Scholar 

  • De Astis G, Lucchi F, Dellino P, La Volpe L, Tranne CA, Frezzotti ML, Peccerillo A (2013) Chapter 11 Geology, volcanic history and petrology of Vulcano (central Aeolian archipelago). Geological Society, London, Memoirs 37(1):281–349. doi:10.1144/M37.11. http://mem.lyellcollection.org/content/37/1/281.abstract

  • De Fiore O (1922) Vulcano (isole eolie). In: Friedlaender I (ed) Revisita vulcanologica (suppl. 3), pp 1–393

  • De La Cruz-Reyna S, Meli RP, Quaas RW Sigurdsson H, Houghton BF, Ballard RD (eds) (2000) Volcanic crises management. Academic press, San Diego

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Degruyter W, Bonadonna C (2012) Improving on mass flow rate estimates of volcanic eruptions. Geophys Res Lett 39(16). doi:10.1029/2012GL052566

  • Dellino P, La Volpe L (1997) Stratigrafia, dinamiche eruttive e deposizionali, scenario eruttivo e valutazioni di pericolosità a La Fossa di Vulcano. Tech. rep., CNR-gruppo Nazionale per la Vulcanologia, Volume speciale Vulcano-Progetto triennale 19931995

  • Dellino P, Astis G, Volpe L, Mele D, Sulpizio R (2011) Quantitative hazard assessment of phreatomagmatic eruptions at Vulcano (Aeolian Islands, Southern Italy) as obtained by combining stratigraphy, event statistics and physical modelling. J Volcanol Geotherm Res 201(1–4):364–384

    Article  Google Scholar 

  • Di Traglia F (2011) The last 1000 years of eruptive activity at the Fossa Cone (Island of Vulcano, Southern Italy). PhD thesis

  • Di Traglia F, Pistolesi M, Rosi M, Bonadonna C, Fusillo R, Roverato M (2013) Growth and erosion: the volcanic geology and morphological evolution of La Fossa (Island of Vulcano, Southern Italy) in the last 1000 years. Geomorphology 194(0):94–107. doi:10.1016/j.geomorph.2013.04.018. http://www.sciencedirect.com/science/article/pii/S0169555X13002249

  • Doronzo DM, Dellino P (2014) Pyroclastic density currents and local topography as seen with the conveyer model. J Volcanol Geotherm Res 278–279:25–39. doi:10.1016/j.jvolgeores.2014.03.012. http://www.sciencedirect.com/science/article/pii/S0377027314000997

  • Douglas J (2007) Physical vulnerability modelling in natural hazard risk assessment. Natural Hazards and Earth System Sciences

  • Druitt TH, Young SR, Baptie B, Bonadonna C, Calder ES, Clarke AB, Cole PD, Harford CL, Herd RA, Luckett R, Ryan G, Voight B (2002) Episodes of cyclic Vulcanian explosive activity with fountain collapse at Soufrière Hills Volcano, Montserrat. In: Druitt T, Kokelaar B (eds) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999, vol 21. Geological Society of London, London, pp 281–306. doi:10.1144/GSL.MEM.2002.021.01.13, http://mem.lyellcollection.org/content/21/1/281.abstract

  • Ferrucci M, Pertusati S, Sulpizio R, Zanchetta G, Pareschi M, Santacroce R (2005) Volcaniclastic debris flows at La Fossa Volcano (Vulcano Island, southern Italy): Insights for erosion behaviour of loose pyroclastic material on steep slopes. J Volcanol Geotherm Res 145(3–4):173–191. doi:10.1016/j.jvolgeores.2005.01.013. http://www.sciencedirect.com/science/article/pii/S0377027305000272

  • Fiorillo F, Wilson R (2004) Rainfall induced debris flows in pyroclastic deposits, Campania (southern Italy). Eng Geol 75(3–4):263–289

    Article  Google Scholar 

  • Frazzetta G, La Volpe L, Sheridan MF (1983) Evolution of the Fossa Cone, Vulcano. J Volcanol Geotherm Res 17(1–4):329–360. doi:10.1016/0377-0273(83)90075-6

  • Frazzetta G, Gillot PY, Volpe L, Sheridan MF (1984) Volcanic hazards at Fossa of Vulcano: data from the last 6,000 years. Bull Volcanol 47(1):105–124. doi:10.1007/BF01960543

    Article  Google Scholar 

  • Fusillo R, Di Traglia F, Gioncada A, Pistolesi M, Wallace P, Rosi M (2015) Deciphering post-caldera volcanism: insight into the Vulcanello (Island of Vulcano, Southern Italy) eruptive activity based on geological and petrological constraints. Bull Volcanol 77(9):1–23. doi:10.1007/s00445-015-0963-6

    Article  Google Scholar 

  • Granieri D, Carapezza M, Chiodini G, Avino R, Caliro S, Ranaldi M, Ricci T, Tarchini L (2006) Correlated increase in CO2 fumarolic content and diffuse emission from La Fossa crater (Vulcano, Italy): Evidence of volcanic unrest or increasing gas release from a stationary deep magma body? Geophys Res Lett 33(13):L13,316

    Article  Google Scholar 

  • Guffanti M, Mayberry GC, Casadevall TJ, Wunderman R (2009) Volcanic hazards to airports. Nat Hazards 51 (2):287–302

    Article  Google Scholar 

  • Guffanti M, Casadevall TJ, Budding K (2010) Encounters of Aircraft with Volcanic Ash Clouds: A Compilation of Known Incidents, 1953–2009. Tech. rep., USGS Data Series 545. http://pubs.usgs.gov/ds/545/

  • Gurioli L, Zanella E, Gioncada A, Sbrana A (2012) The historic magmatic-hydrothermal eruption of the Breccia di Commenda, Vulcano, Italy. Bull Volcanol:1–20

  • Hayes JL, Wilson TM, Magill C (2015) Tephra fall clean-up in urban environments. J Volcanol Geotherm Res 304:359–377. doi:10.1016/j.jvolgeores.2015.09.014. http://www.sciencedirect.com/science/article/pii/S0377027315002930

    Article  Google Scholar 

  • Hillman SE, Horwell CJ, Densmore AL, Damby DE, Fubini B, Ishimine Y, Tomatis M (2012) Sakurajima volcano: a physico-chemical study of the health consequences of long-term exposure to volcanic ash. Bull Volcanol 74(4):913–930. doi:10.1007/s00445-012-0575-3

    Article  Google Scholar 

  • ISTAT (2005) Progetto Census 2000 - Aggiornamento delle basi territoriali, Descrizione dei dati. Tech. rep

  • Jenkins S, Magill C, McAneney J, Blong R (2012) Regional ash fall hazard i: a probabilistic assessment methodology. Bull Volcanol:1–14

  • Jenkins S, Spence R, Fonseca J, Solidum R, Wilson T (2014) Volcanic risk assessment: Quantifying physical vulnerability in the built environment. J Volcanol Geotherm Res 276:105–120. doi:10.1016/j.jvolgeores.2014.03.002. http://www.sciencedirect.com/science/article/pii/S0377027314000729

    Article  Google Scholar 

  • Jenkins SF, Wilson TM, Magill C, Miller V, Stewart C, Blong R, Marzocchi W, Boulton M, Bonadonna C, Costa A (2015) Volcanic ash fall hazard and risk. In: Loughlin S, Sparks S, Brown S, Jenkins S, Vye-Brown C (eds) Global Volcanic Hazards and Risk. doi:10.1017/CBO9781316276273.005. Cambridge University Press, pp 173–222

  • Kalnay EC, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471

    Article  Google Scholar 

  • Keller J (1970) Geological map of the Vulcano Island (Aeolian Islands). Litografia artistica cartografica, Firenze

  • Keller J (1980) The island of Vulcano. Rendiconti Società Italiana Mineralogia e Petrologia 36:369–414

    Google Scholar 

  • Macedonio G, Costa A (2012) Brief Communication “Rain effect on the load of tephra deposits”. Nat Hazards Earth Syst Sci 12(4):1229–1233

    Article  Google Scholar 

  • Magill C, Wilson T, Okada T (2013) Observations of tephra fall impacts from the 2011 Shinmoedake eruption, Japan. Earth, Planets, and Space 65:677–698. doi:10.5047/eps.2013.05.010

    Article  Google Scholar 

  • Marzocchi W, Bebbington M (2012) Probabilistic eruption forecasting at short and long time scales. Bull Volcanol 74(8):1777–1805

    Article  Google Scholar 

  • Menoni S, Molinari D, Parker D, Ballio F, Tapsell S (2012) Assessing multifaceted vulnerability and resilience in order to design risk-mitigation strategies. Nat Hazards 64(3):2057–2082. doi:10.1007/s11069-012-0134-4

    Article  Google Scholar 

  • Mercalli G, Silvestri O (1891) Le eruzioni dell’Isola di Vulcano incominciate il 3 agosto 1888 e terminate il 22 marzo 1890, relazione scientifica. Ann Ufficio Centrale Metereol Geodin Ital 10:1– 213

    Google Scholar 

  • Morton BR, Taylor G, Turner JS (1956) Turbulent Gravitational Convection from Maintained and Instantaneous Sources. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences 234 (1196):1–23. doi:10.1098/rspa.1956.0011. http://rspa.royalsocietypublishing.org/content/234/1196/1.abstract

    Article  Google Scholar 

  • Newhall CG (2000) Volcano warnings. In: Sigurdsson H, Houghton BF, Ballard RD (eds) Encyclopaedia of volcanoes. Academic Press, San Diego, pp 1185–1197

    Google Scholar 

  • Newhall CG, Self S (1982) The volcanic explosivity index (VEI)—an estimate of explosive magnitude for historical volcanism. J Geophys Res 87(C2):1231–1238

    Article  Google Scholar 

  • Onodera S, Kamo K (1994) Aviation safety measures for ash clouds in Japan and the system of Japan Air Lines for monitoring eruptions at Sakurajima volcano. US Geol Surv Bull 2047:213–219

    Google Scholar 

  • Pareschi M, Ranci M, Valenza M, Graziani G (1999) The assessment of volcanic gas hazard by means of numerical models: An example from Vulcano Island (Sicily). Geophys Res Lett 26(10):1405–1408

    Article  Google Scholar 

  • Piochi M, De Astis G, Petrelli M, Ventura G, Sulpizio R, Zanetti A (2009) Constraining the recent plumbing system of Vulcano (Aeolian Arc, Italy) by textural, petrological, and fractal analysis: The 1739 A.D. Pietre Cotte lava flow. Geochemistry, Geophysics, Geosystems 10(1):Q01,009. doi:10.1029/2008GC002176

    Article  Google Scholar 

  • Pomonis A, Spence R, Baxter P (1999) Risk assessment of residential buildings for an eruption of Furnas Volcano, Sao Miguel, the Azores. J Volcanol Geotherm Res 92(1–2):107–131

    Article  Google Scholar 

  • Pyle D (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51(1):1–15

    Article  Google Scholar 

  • Rivera M, Thouret JC, Mariño J, Berolatti R, Fuentes J (2010) Characteristics and management of the 2006–2008 volcanic crisis at the Ubinas volcano (Peru). J Volcanol Geotherm Res 198 (1–2):19–34

    Article  Google Scholar 

  • Rose W, Durant A (2011) Fate of volcanic ash: aggregation and fallout. Geology 39(9):895–896

    Article  Google Scholar 

  • Rose WI, Self S, Murrow PJ, Bonadonna C, Durant AJ, Ernst GGJ (2007) Nature and significance of small volume fall deposits at composite volcanoes: Insights from the October 14, 1974 Fuego eruption, Guatemala. Bull Volcanol 70(9):1043–1067. doi:10.1007/s00445-007-0187-5

    Article  Google Scholar 

  • Sandri L, Thouret JC, Constantinescu R, Biass S, Tonini R (2014) Long-term multi-hazard assessment for El Misti volcano (Peru). Bull Volcanol 76(2):1–26. doi:10.1007/s00445-013-0771-9

    Article  Google Scholar 

  • Scollo S, Boselli A, Coltelli M, Leto G, Pisani G, Prestifilippo M, Spinelli N, Wang X (2015) Volcanic ash concentration during the 12 August 2011 Etna eruption. Geophys Res Lett 42:2634–2641. doi:10.1002/2015GL063027

    Article  Google Scholar 

  • Scollo S, Coltelli M, Prestifilippo M, D’agostino M, Spata G (2009) Monitoring and forecasting Etna volcanic plumes. doi:10.5194/nhess-9-1573-2009

  • Scollo S, Coltelli M, Bonadonna C, Del Carlo P (2013) Tephra hazard assessment at Mt. Etna (Italy). Nat Hazards Earth Syst Sci 13(12):3221–3233. doi:10.5194/nhess-13-3221-2013

    Article  Google Scholar 

  • Scollo S, Tarantola S, Bonadonna C et al (2008) Sensitivity analysis and uncertainty estimation for tephra dispersal models. J Geophys Res Solid Earth 113:B06202

    Article  Google Scholar 

  • Simkin T, Siebert L (1994) Volcanoes of the world. geoscience press, Tucson

    Google Scholar 

  • Sparks R (1986) The dimensions and dynamics of volcanic eruption columns. Bull Volcanol 48(1):3–15

    Article  Google Scholar 

  • Spence R, Kelman I, Brown A, Toyos G, Purser D, Baxter P (2007) Residential building and occupant vulnerability to pyroclastic density currents in explosive eruptions. Nat Hazards Earth Syst Sci 7(2):219–230

    Article  Google Scholar 

  • Spence R, Komorowski JC, Saito K, Brown A, Pomonis A, Toyos G, Baxter P (2008) Modelling the impact of a hypothetical sub-Plinian eruption at La Soufrière of Guadeloupe (Lesser Antilles). J Volcanol Geotherm Res 178(3):516–528. doi:10.1016/j.jvolgeores.2008.03.016. http://www.sciencedirect.com/science/article/pii/S0377027308001169

    Article  Google Scholar 

  • Spence RJS, Pomonis A, Baxter PJ, AW C (1996) Building Damage caused by the Mount Pinatubo eruption of June 15, 1991. University of Washington Press, Seattle, pp 1053–1061

    Google Scholar 

  • Spence RJS, Kelman I, Baxter PJ, Zuccaro G, Petrazzuoli S (2005) Residential building and occupant vulnerability to tephra fall. Nat Hazards Earth Syst Sci 5(4): 477–494

    Article  Google Scholar 

  • Sword-Daniels V, Wilson TM, Sargeant S, Rossetto T, Twigg J, Johnston DM, Loughlin SC, Cole PD (2014) Chapter 26 Consequences of long-term volcanic activity for essential services in Montserrat: challenges, adaptations and resilience. Geological Society, London, Memoirs 39(1):471–488. http://mem.lyellcollection.org/content/39/1/471.abstract

    Article  Google Scholar 

  • Wilson T (2011) Volcanic ash impacts on critical infrastructure. Phys Chem Earth Pt A/B/C, Sword-Daniels V

  • Woods AW, Kienle J (1994) The dynamics and thermodynamics of volcanic clouds: Theory and observations from the april 15 and april 21, 1990 eruptions of redoubt volcano, Alaska. J Volcanol Geotherm Res 62(1–4):273–299. doi:10.1016/0377-0273(94)90037-X

    Article  Google Scholar 

  • Zuccaro G, Cacace F, Spence RJS, Baxter PJ (2008) Impact of explosive eruption scenarios at Vesuvius. J Volcanol Geotherm Res 178(3):416–453

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to C. Frischknecht, H. Monnard, A. Cuomo, and I. Manzella for providing the results of the building survey, to A. Galderisi for the building shapefiles, to L. Chevalley et C. Haenggeli for their help in the characterization of the built environment, to W.I. Rose for providing data on the 1974 Fuego eruption, to the INGV–Palermo for the rainfall data, to Lorenzo Diana for the expertise on roof types, to L. Pioli for the insightful comments, and to S. Jenkins and L. Sandri for their constructive reviews. All computations were performed on the Baobab cluster of the University of Geneva. S. Biass is supported by a SNF grant (#200021-129997).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastien Biass.

Additional information

Editorial responsibility: L. Sandri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biass, S., Bonadonna, C., di Traglia, F. et al. Probabilistic evaluation of the physical impact of future tephra fallout events for the Island of Vulcano, Italy. Bull Volcanol 78, 37 (2016). https://doi.org/10.1007/s00445-016-1028-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-016-1028-1

Keywords

Navigation