Skip to main content

Advertisement

Log in

Impact of cytomegalovirus load on host response to sepsis

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

There is a decades old association between cytomegalovirus reactivation and sepsis in immune-competent hosts. Much has been learned about this relationship, which has been described as bidirectional, meaning that the virus incites and is incited by the host’s inflammatory response. More recent work has suggested that chronic viral infection leaves the host with exaggerated immunity to bacterial infections. In this review, the relationship between CMV and host responses to sepsis are reviewed, with particular attention to the impact that tissue viral load contributes to this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bordes J, Maslin J, Prunet B, d'Aranda E, Lacroix G, Goutorbe P, Dantzer E, Meaudre E (2011) Cytomegalovirus infection in severe burn patients monitoring by real-time polymerase chain reaction: a prospective study. Burns 37(3):434–439. https://doi.org/10.1016/j.burns.2010.11.006

    Article  CAS  PubMed  Google Scholar 

  2. Heininger A, Haeberle H, Fischer I, Beck R, Riessen R, Rohde F, Meisner C, Jahn G, Koenigsrainer A, Unertl K, Hamprecht K (2011) Cytomegalovirus reactivation and associated outcome of critically ill patients with severe sepsis. Crit Care 15(2):R77. https://doi.org/10.1186/cc10069

    Article  PubMed  PubMed Central  Google Scholar 

  3. Heininger A, Jahn G, Engel C, Notheisen T, Unertl K, Hamprecht K (2001) Human cytomegalovirus infections in nonimmunosuppressed critically ill patients. Crit Care Med 29(3):541–547

    CAS  PubMed  Google Scholar 

  4. Chilet M, Aguilar G, Benet I, Belda J, Tormo N, Carbonell JA, Clari MA, Costa E, Navarro D (2010) Virological and immunological features of active cytomegalovirus infection in nonimmunosuppressed patients in a surgical and trauma intensive care unit. J Med Virol 82(8):1384–1391. https://doi.org/10.1002/jmv.21825

    Article  PubMed  Google Scholar 

  5. Ziemann M, Sedemund-Adib B, Reiland P, Schmucker P, Hennig H (2008) Increased mortality in long-term intensive care patients with active cytomegalovirus infection. Crit Care Med 36(12):3145–3150

    PubMed  Google Scholar 

  6. Limaye AP, Kirby KA, Rubenfeld GD, Leisenring WM, Bulger EM, Neff MJ, Gibran NS, Huang M-L, Santo Hayes TK, Corey L, Boeckh M (2008) Cytomegalovirus reactivation in critically ill immunocompetent patients. JAMA 300(4):413–422. https://doi.org/10.1001/jama.300.4.413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. von Muller L, Klemm A, Weiss M, Schneider M, Suger-Wiedeck H, Durmus N, Hampl W, Mertens T (2006) Active cytomegalovirus infection in patients with septic shock. Emerg Infect Dis 12(10):1517–1522

    Google Scholar 

  8. Kutza AS, Muhl E, Hackstein H, Kirchner H, Bein G (1998) High incidence of active cytomegalovirus infection among septic patients. Clin Infect Dis 26(5):1076–1082

    CAS  PubMed  Google Scholar 

  9. Papazian L, Fraisse A, Garbe L, Zandotti C, Thomas P, Saux P, Pierrin G, Gouin F (1996) Cytomegalovirus. An unexpected cause of ventilator-associated pneumonia. Anesthesiology 84(2):280–287

    CAS  PubMed  Google Scholar 

  10. Domart Y, Trouillet JL, Fagon JY, Chastre J, Brun-Vezinet F, Gibert C (1990) Incidence and morbidity of cytomegaloviral infection in patients with mediastinitis following cardiac surgery [see comments]. Chest 97(1):18–22

    CAS  PubMed  Google Scholar 

  11. Walton AH, Muenzer JT, Rasche D, Boomer JS, Sato B, Brownstein BH, Pachot A, Brooks TL, Deych E, Shannon WD, Green JM, Storch GA, Hotchkiss RS (2014) Reactivation of multiple viruses in patients with sepsis. PLoS ONE 9(6):e98819. https://doi.org/10.1371/journal.pone.0098819

    Article  PubMed  PubMed Central  Google Scholar 

  12. Coisel Y, Bousbia S, Forel J-M, Hraiech S, Lascola B, Roch A, Zandotti C, Million M, Jaber S, Raoult D, Papazian L (2012) Cytomegalovirus and herpes simplex virus effect on the prognosis of mechanically ventilated patients suspected to have ventilator-associated pneumonia. PLoS ONE 7(12):e51340. https://doi.org/10.1371/journal.pone.0051340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith CA, Conroy LT, Pollock M, Ruddy J, Binning A, McCruden EA (2010) Detection of herpes viruses in respiratory secretions of patients undergoing artificial ventilation. J Med Virol 82(8):1406–1409. https://doi.org/10.1002/jmv.21794

    Article  CAS  PubMed  Google Scholar 

  14. Jaber S, Chanques G, Borry J, Souche B, Verdier R, Perrigault P-F, Eledjam J-J (2005) Cytomegalovirus infection in critically Ill patients: associated factors and consequences. Chest 127(1):233–241

    PubMed  Google Scholar 

  15. Friedrichs I, Bingold T, Keppler OT, Pullmann B, Reinheimer C, Berger A (2013) Detection of herpesvirus EBV DNA in the lower respiratory tract of ICU patients: a marker of infection of the lower respiratory tract? Med Microbiol Immunol 202(6):431–436. https://doi.org/10.1007/s00430-013-0306-1

    Article  CAS  PubMed  Google Scholar 

  16. Chiche L, Forel JM, Roch A, Guervilly C, Pauly V, Allardet-Servent J, Gainnier M, Zandotti C, Papazian L (2009) Active Cytomegalovirus infection is common in mechanically ventilated medical intensive care unit patients. Crit Care Med 37(6):1850–1857

    PubMed  Google Scholar 

  17. Cook CH, Martin LC, Yenchar JK, Lahm MC, McGuinness B, Davies EA, Ferguson RM (2003) Occult herpes family viral infections are endemic in critically ill surgical patients. Crit Care Med 31(7):1923–1929

    PubMed  Google Scholar 

  18. Cook CH, Yenchar JK, Kraner TO, Davies EA, Ferguson RM (1998) Occult herpes family viruses may increase mortality in critically ill surgical patients. Am J Surg 176(4):357–360

    CAS  PubMed  Google Scholar 

  19. Desachy A, Ranger-Rogez S, Francois B, Venot C, Traccard I, Gastinne H, Denis F, Vignon P (2001) Reactivation of human herpesvirus type 6 in multiple organ failure syndrome. Clin Infect Dis 32(2):197–203

    CAS  PubMed  Google Scholar 

  20. Razonable RR, Fanning C, Brown RA, Espy MJ, Rivero A, Wilson J, Kremers W, Smith TF, Paya CV (2002) Selective reactivation of human herpesvirus 6 variant a occurs in critically ill immunocompetent hosts [see comment]. J Infect Dis 185(1):110–113

    PubMed  Google Scholar 

  21. Stephan F, Meharzi D, Ricci S, Fajac A, Clergue F, Bernaudin JF (1996) Evaluation by polymerase chain reaction of cytomegalovirus reactivation in intensive care patients under mechanical ventilation. Intensive Care Med 22(11):1244–1249

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Vogel T, Vadonis R, Kuehn J, Eing BR, Senninger N, Haier J (2008) Viral reactivation is not related to septic complications after major surgical resections. APMIS 116(4):292–301

    CAS  PubMed  Google Scholar 

  23. Cinel G, Pekcan S, Özçelik U, Alp A, Yalçın E, Doğru Ersöz D, Kiper N (2014) Cytomegalovirus infection in immunocompetent wheezy infants: the diagnostic value of CMV PCR in bronchoalveolar lavage fluid. J Clin Pharm Ther 39(4):399–403. https://doi.org/10.1111/jcpt.12169

    Article  CAS  PubMed  Google Scholar 

  24. Singh N, Inoue M, Osawa R, Wagener MM, Shinohara ML (2017) Inflammasome expression and cytomegalovirus viremia in critically ill patients with sepsis. J Clin Virol 93:8–14. https://doi.org/10.1016/j.jcv.2017.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ong DY, Spitoni C, Klein Klouwenberg PC, Verduyn Lunel F, Frencken J, Schultz M, van der Poll T, Kesecioglu J, Bonten MM, Cremer O (2016) Cytomegalovirus reactivation and mortality in patients with acute respiratory distress syndrome. Intensive Care Med 42(3):333–341. https://doi.org/10.1007/s00134-015-4071-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Castón JJ, Cantisán S, González-Gasca F, Páez-Vega A, Abdel-Hadi H, Illescas S, Alonso G, Torre-Cisneros J (2016) Interferon-γ production by CMV-specific CD8+ T lymphocytes provides protection against cytomegalovirus reactivation in critically ill patients. Intensive Care Med 42(1):46–53. https://doi.org/10.1007/s00134-015-4077-6

    Article  CAS  PubMed  Google Scholar 

  27. Frantzeskaki FG, Karampi ES, Kottaridi C, Alepaki M, Routsi C, Tzanela M, Vassiliadi DA, Douka E, Tsaousi S, Gennimata V, Ilias I, Nikitas N, Armaganidis A, Karakitsos P, Papaevangelou V, Dimopoulou I (2015) Cytomegalovirus reactivation in a general, nonimmunosuppressed intensive care unit population: incidence, risk factors, associations with organ dysfunction, and inflammatory biomarkers. J Crit Care 30(2):276–281. https://doi.org/10.1016/j.jcrc.2014.10.002

    Article  PubMed  Google Scholar 

  28. Ong DSY, Bonten MJM, Spitoni C, Verduyn Lunel FM, Frencken JF, Horn J, Schultz MJ, van der Poll T, Klein Klouwenberg PMC, Cremer OL, Consortium ftMDaRSoS (2017) Epidemiology of multiple herpes viremia in previously immunocompetent patients with septic shock. Clin Infect Dis 64(9):1204–1210. https://doi.org/10.1093/cid/cix120

    Article  CAS  PubMed  Google Scholar 

  29. Kalil AC, Florescu DF (2009) Prevalence and mortality associated with cytomegalovirus infections in non-immunosuppressed ICU patients. Crit Care Med 37(8):2350–2358

    PubMed  Google Scholar 

  30. Lachance P, Chen J, Featherstone R, Sligl WI (2017) Association between cytomegalovirus reactivation and clinical outcomes in immunocompetent critically ill patients: a systematic review and meta-analysis. Open Forum Infect Dis 4(2):ofx029. https://doi.org/10.1093/ofid/ofx029

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mansfield SA, Cook CH (2017) Antiviral prophylaxis of cytomegalovirus reactivation in immune competent patients-the jury remains out. J Thorac Dis 9(8):2221–2223. https://doi.org/10.21037/jtd.2017.06.130

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cowley NJ, Owen A, Shiels SC, Millar J, Woolley R, Ives N, Osman H, Moss P, Bion JF (2017) Safety and efficacy of antiviral therapy for prevention of cytomegalovirus reactivation in immunocompetent critically ill patients: a randomized clinical trial. JAMA Intern Med. https://doi.org/10.1001/jamainternmed.2017.0895

    Article  PubMed  PubMed Central  Google Scholar 

  33. Limaye AP, Stapleton RD, Peng L, Gunn SR, Kimball LE, Hyzy R, Exline MC, Files DC, Morris PE, Frankel SK, Mikkelsen ME, Hite D, Enfield KB, Steingrub J, O'Brien J, Parsons PE, Cuschieri J, Wunderink RG, Hotchkin DL, Chen YQ, Rubenfeld GD, Boeckh M (2017) Effect of ganciclovir on IL-6 levels among cytomegalovirus-seropositive adults with critical illness: a randomized clinical trial. JAMA 318(8):731–740. https://doi.org/10.1001/jama.2017.10569

    Article  PubMed  PubMed Central  Google Scholar 

  34. Seckert CK, Griessl M, Buttner JK, Freitag K, Lemmermann N, Hummel M, Liu XF, Abecassis M, Angulo A, Messerle M, Cook CH, Reddehase M (2013) Immune surveillance of cytomegalovirus latency and reactivation in murine models: link to memory inflation. In: Reddehase MJ (ed) Cytomegaloviruses. Caister Academic Press 1, Norfolk, pp 374–416

    Google Scholar 

  35. Dorsch-Hasler K, Keil GM, Weber F, Jasin M, Schaffner W, Koszinowski UH (1985) A long and complex enhancer activates transcription of the gene coding for the highly abundant immediate early mRNA in murine cytomegalovirus. Proc Natl Acad Sci USA 82(24):8325–8329

    CAS  PubMed  Google Scholar 

  36. Liu B, Stinski MF (1992) Human cytomegalovirus contains a tegument protein that enhances transcription from promoters with upstream ATF and AP-1 cis-acting elements. J Virol 66(7):4434–4444

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cornell TT, Wynn J, Shanley TP, Wheeler DS, Wong HR (2010) Mechanisms and regulation of the gene-expression response to sepsis. Pediatrics 125(6):1248–1258. https://doi.org/10.1542/peds.2009-3274

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li Y, Alam HB (2011) Modulation of acetylation: creating a pro-survival and anti-inflammatory phenotype in lethal hemorrhagic and septic shock. J Biomed Biotechnol 2011:523481. https://doi.org/10.1155/2011/523481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Docke WD, Prosch S, Fietze E, Kimel V, Zuckermann H, Klug C, Syrbe U, Kruger DH, von Baehr R, Volk HD (1994) Cytomegalovirus reactivation and tumour necrosis factor. Lancet 343(8892):268–269

    CAS  PubMed  Google Scholar 

  40. Prosch S, Staak K, Stein J, Liebenthal C, Stamminger T, Volk HD, Kruger DH (1995) Stimulation of the human cytomegalovrus IE enhancer/promoter in HL-60 Cells by TNFalpha is mediated via induction of NF-kappaB. Virology 208(1):197–206

    CAS  PubMed  Google Scholar 

  41. Stein J, Volk HD, Liebenthal C, Kruger DH, Prosch S (1993) Tumour necrosis factor alpha stimulates the activity of the human cytomegalovirus major immediate early enhancer/promoter in immature monocytic cells. J Gen Virol 74(11):2333–2338

    CAS  PubMed  Google Scholar 

  42. Kline JN, Hunninghake GM, He B, Monick MM, Hunninghake GW (1998) Synergistic activation of the human cytomegalovirus major immediate early promoter by prostaglandin E2 and cytokines. Exp Lung Res 24(1):3–14

    CAS  PubMed  Google Scholar 

  43. Hunninghake GW, Monick MM, Liu B, Stinski MF (1989) The promoter-regulatory region of the major immediate-early gene of human cytomegalovirus responds to T-lymphocyte stimulation and contains functional cyclic AMP-response elements. J Virol 63(7):3026–3033

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Laegreid A, Medvedev A, Nonstad U, Bombara MP, Ranges G, Sundan A, Espevik T (1994) Tumor necrosis factor receptor p75 mediates cell-specific activation of nuclear factor kappa B and induction of human cytomegalovirus enhancer. J Biol Chem 269(10):7785–7791

    CAS  PubMed  Google Scholar 

  45. Cook C, Zhang X, McGuinness B, Lahm M, Sedmak D, Ferguson R (2002) Intra-abdominal bacterial infection reactivates latent pulmonary cytomegalovirus in immunocompetent mice. J Infect Dis 185:1395–1400

    PubMed  Google Scholar 

  46. Cook CH, Trgovcich J, Zimmerman PD, Zhang Y, Sedmak DD (2006) Lipopolysaccharide, tumor necrosis factor alpha, or interleukin-1{beta} triggers reactivation of latent cytomegalovirus in immunocompetent mice. J Virol 80(18):9151–9158

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hummel M, Zhang Z, Yan S, DePlaen I, Golia P, Varghese T, Thomas G, Abecassis MI (2001) Allogeneic transplantation induces expression of cytomegalovirus immediate-early genes in vivo: a model for reactivation from latency. J Virol 75(10):4814–4822

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Simon CO, Seckert CK, Dreis D, Reddehase MJ, Grzimek NKA (2005) Role for tumor necrosis factor alpha in murine cytomegalovirus transcriptional reactivation in latently infected lungs. J Virol 79(1):326–340

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Simon CO, Kuhnapfel B, Reddehase MJ, Grzimek NKA (2007) Murine cytomegalovirus major immediate-early enhancer region operating as a genetic switch in bidirectional gene pair transcription. J Virol 81(14):7805–7810. https://doi.org/10.1128/jvi.02388-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Loser P, Jennings GS, Strauss M, Sandig V (1998) Reactivation of the previously silenced cytomegalovirus major immediate-early promoter in the mouse liver: involvement of NFkappaB. J Virol 72(1):180–190

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Murphy JC, Fischle W, Verdin E, Sinclair JH (2002) Control of cytomegalovirus lytic gene expression by histone acetylation. EMBO J 21(5):1112–1120. https://doi.org/10.1093/emboj/21.5.1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Reeves MB, MacAry PA, Lehner PJ, Sissons JGP, Sinclair JH (2005) Latency, chromatin remodeling, and reactivation of human cytomegalovirus in the dendritic cells of healthy carriers. Proc Natl Acad Sci 102(11):4140–4145. https://doi.org/10.1073/pnas.0408994102

    Article  CAS  PubMed  Google Scholar 

  53. Liu XF, Yan S, Abecassis M, Hummel M (2008) Establishment of murine cytomegalovirus latency in vivo is associated with changes in histone modifications and recruitment of transcriptional repressors to the major immediate-early promoter. J Virol 82(21):10922–10931. https://doi.org/10.1128/jvi.00865-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hummel M, Yan S, Li Z, Varghese TK, Abecassis M (2007) Transcriptional reactivation of murine cytomegalovirus ie gene expression by 5-aza-2'-deoxycytidine and trichostatin A in latently infected cells despite lack of methylation of the major immediate-early promoter. J Gen Virol 88(4):1097–1102. https://doi.org/10.1099/vir.0.82696-0

    Article  CAS  PubMed  Google Scholar 

  55. Dağ F, Dölken L, Holzki J, Drabig A, Weingärtner A, Schwerk J, Lienenklaus S, Conte I, Geffers R, Davenport C, Rand U, Köster M, Weiß S, Adler B, Wirth D, Messerle M, Hauser H, Čičin-Šain L (2014) Reversible silencing of cytomegalovirus genomes by type I interferon governs virus latency. PLoS Pathog 10(2):e1003962. https://doi.org/10.1371/journal.ppat.1003962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Simon CO, Holtappels R, Tervo H-M, Bohm V, Daubner T, Oehrlein-Karpi SA, Kuhnapfel B, Renzaho A, Strand D, Podlech J, Reddehase MJ, Grzimek NKA (2006) CD8 T cells control cytomegalovirus latency by epitope-specific sensing of transcriptional reactivation. J Virol 80(21):10436–10456

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kurz SK, Reddehase MJ (1999) Patchwork pattern of transcriptional reactivation in the lungs indicates sequential checkpoints in the transition from murine cytomegalovirus latency to recurrence. J Virol 73(10):8612–8622

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, Bricker TL, Jarman SD, Kreisel D, Krupnick AS, Srivastava A, Swanson PE, Green JM, Hotchkiss RS (2011) Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA J Am Med Assoc 306(23):2594–2605. https://doi.org/10.1001/jama.2011.1829

    Article  CAS  Google Scholar 

  59. Hotchkiss RS, Nicholson DW (2006) Apoptosis and caspases regulate death and inflammation in sepsis. Nat Rev Immunol 6(11):813–822

    CAS  PubMed  Google Scholar 

  60. Campbell J, Trgovcich J, Kincaid M, Zimmerman PD, Klenerman P, Sims S, Cook CH (2012) Transient CD8-memory contraction: a potential contributor to latent cytomegalovirus reactivation. J Leukoc Biol 92(5):933–937. https://doi.org/10.1189/jlb.1211635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hotchkiss RS, Tinsley KW, Swanson PE, Schmieg RE, Hui JJ, Chang KC, Osborne DF, Freeman BD, Cobb JP, Buchman TG, Karl IE (2001) Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J Immunol 166(11):6952–6963

    CAS  PubMed  Google Scholar 

  62. Jonjic S, Pavic I, Polic B, Crnkovic I, Lucin P, Koszinowski UH (1994) Antibodies are not essential for the resolution of primary cytomegalovirus infection but limit dissemination of recurrent virus. J Exp Med 179(5):1713–1717. https://doi.org/10.1084/jem.179.5.1713

    Article  CAS  PubMed  Google Scholar 

  63. Krmpotić A, Podlech J, Reddehase MJ, Britt WJ, Jonjić S (2019) Role of antibodies in confining cytomegalovirus after reactivation from latency: three decades’ résumé. Med Microbiol Immunol. https://doi.org/10.1007/s00430-019-00600-1

    Article  PubMed  Google Scholar 

  64. Holtappels A, Pahl-Seibert MF, Thomas D, Reddehase MJ (2000) Enrichment of immediate-early 1 (m123/pp89) peptide-specific CD8 T cells in a pulmonary CD62L10 memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol 74(24):11495–11503

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, Sleath PR, Grabstein KH, Hosken NA, Kern F, Nelson JA, Picker LJ (2005) Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202(5):673–685. https://doi.org/10.1084/jem.20050882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vescovini R, Biasini C, Fagnoni FF, Telera AR, Zanlari L, Pedrazzoni M, Bucci L, Monti D, Medici MC, Chezzi C, Franceschi C, Sansoni P (2007) Massive load of functional effector CD4+ and CD8+ T cells against cytomegalovirus in very old subjects. J Immunol 179(6):4283–4291

    CAS  PubMed  Google Scholar 

  67. Seckert CK, Griessl M, Buttner JK, Scheller S, Simon CO, Kropp KA, Renzaho A, Kuhnapfel B, Grzimek NK, Reddehase MJ (2012) Viral latency drives 'memory inflation': a unifying hypothesis linking two hallmarks of cytomegalovirus infection. Med Microbiol Immunol. https://doi.org/10.1007/s00430-012-0273-y

    Article  PubMed  Google Scholar 

  68. Snyder CM, Cho KS, Bonnett EL, van Dommelen S, Shellam GR, Hill AB (2008) Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells. Immunity 29(4):650–659

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Baars PA, Sierro S, Arens R, Tesselaar K, Hooibrink B, Klenerman P, van Lier RAW (2005) Properties of murine CD8+CD27 T cells. Eur J Immunol 35(11):3131–3141

    CAS  PubMed  Google Scholar 

  70. Deutschman CS, Konstantinides FN, Tsai M, Simmons RL, Cerra FB (1987) Physiology and metabolism in isolated viral septicemia: further evidence of an organism-independent, Host-Dependent Response. Arch Surg 122(1):21–25. https://doi.org/10.1001/archsurg.1987.01400130027003

    Article  CAS  PubMed  Google Scholar 

  71. Cook CH, Zhang Y, Sedmak DD, Martin LC, Jewell S, Ferguson RM (2006) Pulmonary cytomegalovirus reactivation causes pathology in immunocompetent mice. Crit Care Med 34(3):842–849

    PubMed  PubMed Central  Google Scholar 

  72. Barton ES, White DW, Cathelyn JS, Brett-McClellan KA, Engle M, Diamond MS, Miller VL, Virgin HW (2007) Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447(7142):326–329

    CAS  PubMed  Google Scholar 

  73. Cook CH, Trgovcich J (2011) Cytomegalovirus reactivation in critically ill immunocompetent hosts: a decade of progress and remaining challenges. Antiviral Res 90(3):151–159. https://doi.org/10.1016/j.antiviral.2011.03.179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Welsh RM, Selin LK (2002) No one is naive: the significance of heterologous T-cell immunity. Nat Rev Immunol 2(6):417–426

    CAS  PubMed  Google Scholar 

  75. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, McDonald-Smith GP, Gao H, Hennessy L, Finnerty CC, Lopez CM, Honari S, Moore EE, Minei JP, Cuschieri J, Bankey PE, Johnson JL, Sperry J, Nathens AB, Billiar TR, West MA, Jeschke MG, Klein MB, Gamelli RL, Gibran NS, Brownstein BH, Miller-Graziano C, Calvano SE, Mason PH, Cobb JP, Rahme LG, Lowry SF, Maier RV, Moldawer LL, Herndon DN, Davis RW, Xiao W, Tompkins RG (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1222878110

    Article  PubMed  Google Scholar 

  76. Mansfield S, Grießl M, Gutknecht M, Cook C (2015) Sepsis and cytomegalovirus: foes or conspirators? Med Microbiol Immunol. https://doi.org/10.1007/s00430-015-0407-0

    Article  PubMed  PubMed Central  Google Scholar 

  77. Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA, Thompson EA, Fraser KA, Rosato PC, Filali-Mouhim A, Sekaly RP, Jenkins MK, Vezys V, Haining WN, Jameson SC, Masopust D (2016) Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532(7600):512–516. https://doi.org/10.1038/nature17655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jergovic M, Contreras NA, Nikolich-Zugich J (2019) Impact of CMV upon immune aging: facts and fiction. Med Microbiol Immunol. https://doi.org/10.1007/s00430-019-00605-w

    Article  PubMed  Google Scholar 

  79. Soderberg-Naucler C, Fish KN, Nelson JA (1997) Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell 91(1):119–126

    CAS  PubMed  Google Scholar 

  80. Larsson S, Soderberg-Naucler C, Wang FZ, Moller E (1998) Cytomegalovirus DNA can be detected in peripheral blood mononuclear cells from all seropositive and most seronegative healthy blood donors over time. Transfusion 38(3):271–278

    CAS  PubMed  Google Scholar 

  81. Slobedman B, Mocarski ES (1999) Quantitative analysis of latent human cytomegalovirus. J Virol 73(6):4806–4812

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Dioverti MV, Razonable RR (2015) Clinical utility of cytomegalovirus viral load in solid organ transplant recipients. Curr Opin Infect Dis 28(4):317–322. https://doi.org/10.1097/QCO.0000000000000173

    Article  PubMed  Google Scholar 

  83. Reddehase M, Lemmermann N (2019) Cellular reservoirs of latent cytomegaloviruses. Med Microbiol Immunol. https://doi.org/10.1007/s00430-019-00592-y

    Article  PubMed  PubMed Central  Google Scholar 

  84. Reddehase MJ, Balthesen M, Rapp M, Jonjic S, Pavic I, Koszinowski UH (1994) The conditions of primary infection define the load of latent viral genome in organs and the risk of recurrent cytomegalovirus disease. J Exp Med 179(1):185–193

    CAS  PubMed  Google Scholar 

  85. Adler SP, Reddehase M (2019) Pediatric roots of cytomegalovirus recurrence and memory inflation in the elderly. Med Microbiol Immunol. https://doi.org/10.1007/s00430-019-00609-6

    Article  PubMed  Google Scholar 

  86. Redeker A, Welten SPM, Arens R (2014) Viral inoculum dose impacts memory T-cell inflation. Eur J Immunol 44(4):1046–1057. https://doi.org/10.1002/eji.201343946

    Article  CAS  PubMed  Google Scholar 

  87. Trgovcich J, Kincaid M, Thomas A, Griessl M, Zimmerman P, Dwivedi V, Bergdall V, Klenerman P, Cook CH (2016) Cytomegalovirus reinfections stimulate CD8 T-memory inflation. PLoS ONE 11(11):e0167097. https://doi.org/10.1371/journal.pone.0167097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Redeker A, Remmerswaal EBM, van der Gracht ETI, Welten SPM, Höllt T, Koning F, Cicin-Sain L, Nikolich-Žugich J, ten Berge IJM, van Lier RAW, van Unen V, Arens R (2018) The contribution of cytomegalovirus infection to immune senescence is set by the infectious dose. Front Immunol 8(1953):1–15. https://doi.org/10.3389/fimmu.2017.01953

    Article  CAS  Google Scholar 

  89. Mansfield SA, Dwivedi V, Elgharably H, Griessl M, Zimmerman PD, Limaye AP, Cook CH (2019) Cytomegalovirus immunoglobulin-G titers do not predict reactivation risk in immunocompetent hosts. J Med Virol. https://doi.org/10.1002/jmv.25389

    Article  PubMed  Google Scholar 

  90. Booth TW, Scalzo AA, Carrello C, Lyons PA, Farrell HE, Singleton GR, Shellam GR (1993) Molecular and biological characterization of new strains of murine cytomegalovirus isolated from wild mice. Arch Virol 132(1–2):209–220

    CAS  PubMed  Google Scholar 

  91. Kotsimbos ATC, Sinickas V, Glare EM, Esmore DS, Snell GI, Walters EH, Williams TJ (1997) Quantitative detection of human cytomegalovirus DNA in lung transplant recipients. Am J Respir Crit Care Med 156(4):1241–1246

    CAS  PubMed  Google Scholar 

  92. Thomas AC, Forster MR, Bickerstaff AA, Zimmerman PD, Wing BA, Trgovcich J, Bergdall VK, Klenerman P, Cook CH (2010) Occult cytomegalovirus in vivarium-housed mice may influence transplant allograft acceptance. Transpl Immunol 23(1–2):86–91

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Stowe RP, Kozlova EV, Yetman DL, Walling DM, Goodwin JS, Glaser R (2007) Chronic herpesvirus reactivation occurs in aging. Exp Gerontol 42(6):563–570. https://doi.org/10.1016/j.exger.2007.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Parry HM, Zuo J, Frumento G, Mirajkar N, Inman C, Edwards E, Griffiths M, Pratt G, Moss P (2016) Cytomegalovirus viral load within blood increases markedly in healthy people over the age of 70 years. Immun Ageing 13(1):1. https://doi.org/10.1186/s12979-015-0056-6

    Article  PubMed  PubMed Central  Google Scholar 

  95. Leng S, Qu T, Semba R, Li H, Yao X, Nilles T, Yang X, Manwani B, Walston J, Ferrucci L, Fried L, Margolick J, Bream J (2011) Relationship between cytomegalovirus (CMV) IgG serology, detectable CMV DNA in peripheral monocytes, and CMV pp65&495–503-specific CD8+ T cells in older adults. Age 33(4):607–614. https://doi.org/10.1007/s11357-011-9205-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Leng SX, Li H, Xue QL, Tian J, Yang X, Ferrucci L, Fedarko N, Fried LP, Semba RD (2011) Association of detectable cytomegalovirus (CMV) DNA in monocytes rather than positive CMV IgG serology with elevated neopterin levels in community-dwelling older adults. Exp Gerontol 46(8):679–684. https://doi.org/10.1016/j.exger.2011.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Toro AI, Ossa J (1996) PCR activity of CMV in healthy CMV-seropositive individuals: does latency need redefinition? Res Virol 147(4):233–238

    CAS  PubMed  Google Scholar 

  98. Robert FP, Hutto C (1986) Group day care and cytomegaloviral infections of mothers and children. Rev Infect Dis 8(4):599–605

    Google Scholar 

  99. Zanghellini F, Boppana SB, Pass RF, Griffiths PD, Emery VC (1999) Asymptomatic primary cytomegalovirus infection: virologic and immunologic features. J Infect Dis 180(3):702–707. https://doi.org/10.1086/314939

    Article  CAS  PubMed  Google Scholar 

  100. Arora N, Novak Z, Fowler KB, Boppana SB, Ross SA (2010) Cytomegalovirus viruria and DNAemia in healthy seropositive women. J Infect Dis 202(12):1800–1803. https://doi.org/10.1086/657412

    Article  PubMed  PubMed Central  Google Scholar 

  101. Mehta SK, Stowe RP, Feiveson AH, Tyring SK, Pierson DL (2000) Reactivation and shedding of cytomegalovirus in astronauts during spaceflight. J Infect Dis 182(6):1761–1764. https://doi.org/10.1086/317624

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles H. Cook.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Edited by: Matthias J. Reddehase.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Special Issue on Immunological Imprinting during Chronic Viral Infection.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marandu, T., Dombek, M. & Cook, C.H. Impact of cytomegalovirus load on host response to sepsis. Med Microbiol Immunol 208, 295–303 (2019). https://doi.org/10.1007/s00430-019-00603-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-019-00603-y

Keywords

Navigation