Skip to main content

Overview of Human Cytomegalovirus Pathogenesis

  • Protocol
  • First Online:
Human Cytomegaloviruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2244))

Abstract

Human cytomegalovirus (HCMV) is a betaherpesvirus with a global seroprevalence of 60–90%. HCMV is the leading cause of congenital infections and poses a great health risk to immunocompromised individuals. Although HCMV infection is typically asymptomatic in the immunocompetent population, infection can result in mononucleosis and has also been associated with the development of certain cancers, as well as chronic inflammatory diseases such as various cardiovascular diseases. In immunocompromised patients, including AIDS patients, transplant recipients, and developing fetuses, HCMV infection is associated with increased rates of morbidity and mortality. Currently there is no vaccine for HCMV and there is a need for new pharmacological treatments. Ongoing research seeks to further define the complex aspects of HCMV pathogenesis, which could potentially lead to the generation of new therapeutics to mitigate the disease states associated with HCMV infection. The following chapter reviews the advancements in our understanding of HCMV pathogenesis in the immunocompetent and immunocompromised hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mocarsk ES Jr et al (2013) Cytomegaloviruses. In: Knipe DM, Howley PM (eds) Fields Virology. Lippincott Williams & Wilkins, Philadelphia, pp 1960–2014

    Google Scholar 

  2. Britt W (2008) Manifestations of human cytomegalovirus infection: Proposed mechanisms of acute and chronic disease. In: Stinksi MF, Shenk T (eds) Human Cytomegaloviruses. Springer-Verlag, Berlin, pp 417–470

    Chapter  Google Scholar 

  3. Bravender T (2010) Epstein-Barr virus, cytomegalovirus, and infectious mononucleosis. Adolesc Med State Art Rev 21(2):251–264

    PubMed  Google Scholar 

  4. Eddleston M et al (1997) Severe cytomegalovirus infection in immunocompetent patients. Clin Infect Dis 24(1):52–56

    Article  CAS  PubMed  Google Scholar 

  5. Söderberg-Nauclér C (2008) HCMV microinfections in inflammatory diseases and cancer. J Clin Virol 41(3):218–223

    Article  PubMed  CAS  Google Scholar 

  6. Michaelis M, Doerr HW, Cinatl J (2009) The story of human cytomegalovirus and cancer: increasing evidence and open questions. Neoplasia 11(1):1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Caposio P, Orloff SL, Streblow DN (2011) The role of cytomegalovirus in angiogenesis. Virus Res 157:204–211

    Article  CAS  PubMed  Google Scholar 

  8. Streblow DN et al (2008) Mechanisms of cytomegalovirus-accelerated vascular disease: induction of paracrine factors that promote angiogenesis and wound healing. Curr Top Microbiol Immunol 325:397–415

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bai B et al (2016) Human cytomegalovirus infection and colorectal cancer risk: a meta-analysis. Oncotarget 7(47):76735–76742

    Article  PubMed  PubMed Central  Google Scholar 

  10. Du Y, Zhang G, Liu Z (2018) Human cytomegalovirus infection and coronary heart disease: a systematic review. Virol J 15(1):31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lebedeva AM et al (2018) Cytomegalovirus infection in cardiovascular diseases. Biochemistry (Mosc) 83(12):1437–1447

    Article  CAS  Google Scholar 

  12. McFaline-Figueroa JR, Wen PY (2017) The viral connection to glioblastoma. Curr Infect Dis Rep 19(5):5

    Article  PubMed  Google Scholar 

  13. Manicklal S et al (2013) The "silent" global burden of congenital cytomegalovirus. Clin Microbiol Rev 26:86–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ross SA, Boppana SB (2005) Congenital cytomegalovirus infection: outcome and diagnosis. Semin Pediatr Infect Dis 16:44–49

    Article  PubMed  Google Scholar 

  15. Boppana SB, Ross SA, Fowler KB (2013) Congenital cytomegalovirus infection: clinical outcome. Clin Infect Dis 57(Suppl 4):S178–S181

    Article  PubMed  PubMed Central  Google Scholar 

  16. Klemola E et al (1970) Infectious-mononucleosis-like disease with negative heterophil agglutination test. Clinical features in relation to Epstein-Barr virus and cytomegalovirus antibodies. J Infect Dis 121(6):608–614

    Article  CAS  PubMed  Google Scholar 

  17. Jordan MC et al (1973) Spontaneous cytomegalovirus mononucleosis. Clinical and laboratory observations in nine cases. Ann Intern Med 79(2):153–160

    Article  CAS  PubMed  Google Scholar 

  18. Nolan N et al (2017) Primary cytomegalovirus infection in immunocompetent adults in the United States—A case series. IDCases 10:123–126

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wreghitt TG et al (2003) Cytomegalovirus infection in immunocompetent patients. Clin Infect Dis 37(12):1603–1606

    Article  CAS  PubMed  Google Scholar 

  20. Adam E et al (1987) High levels of cytomegalovirus antibody in patients requiring vascular surgery for atherosclerosis. Lancet 2(8554):291–293

    Article  CAS  PubMed  Google Scholar 

  21. Hendrix MG et al (1990) High prevalence of latently present cytomegalovirus in arterial walls of patients suffering from grade III atherosclerosis. Am J Pathol 136(1):23–28

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Melnick JL et al (1983) Cytomegalovirus antigen within human arterial smooth muscle cells. Lancet 2:644–647

    Article  CAS  PubMed  Google Scholar 

  23. Nieto FJ et al (1996) Cohort study of cytomegalovirus infection as a risk factor for carotid intimal-medial thickening, a measure of subclinical atherosclerosis. Circulation 94(5):922–927

    Article  CAS  PubMed  Google Scholar 

  24. Gyorkey F et al (1984) Herpesviridae in the endothelial and smooth muscle cells of the proximal aorta in atherosclerotic patients. Exp Mol Pathol 40:328–339

    Article  CAS  PubMed  Google Scholar 

  25. Beyaz MO et al (2019) Evaluation of the relationship between plaque formation leading to symptomatic carotid artery stenosis and cytomegalovirus by investigating the virus DNA. Arch Med Sci Atheroscler Dis 4:e19–e24

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhou YF et al (1996) Association between prior cytomegalovirus infection and the risk of restenosis after coronary atherectomy. N Engl J Med 335:624–630

    Article  CAS  PubMed  Google Scholar 

  27. Speir E et al (1994) Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science 265(5170):391–394

    Article  CAS  PubMed  Google Scholar 

  28. Hussain T et al (2007) Positive pretransplantation cytomegalovirus serology is a risk factor for cardiac allograft vasculopathy in children. Circulation 115:1798–1805

    Article  PubMed  Google Scholar 

  29. Söderberg-Nauclér C, Emery VC (2001) Viral infections and their impact on chronic renal allograft dysfunction. Transpantation 71:SS24–SS30

    Google Scholar 

  30. Zhu J et al (1999) Cytomegalovirus in the pathogenesis of atherosclerosis: the role of inflammation as reflected by elevated C-reactive protein levels. J Am Coll Cardiol 34(6):1738–1743

    Article  CAS  PubMed  Google Scholar 

  31. Savva GM et al (2013) Cytomegalovirus infection is associated with increased mortality in the older population. Aging Cell 12(3):381–387

    Article  CAS  PubMed  Google Scholar 

  32. Spyridopoulos I et al (2016) CMV seropositivity and T-cell senescence predict increased cardiovascular mortality in octogenarians: results from the Newcastle 85+ study. Aging Cell 15(2):389–392

    Article  CAS  PubMed  Google Scholar 

  33. Simanek AM et al (2011) Seropositivity to cytomegalovirus, inflammation, all-cause and cardiovascular disease-related mortality in the United States. PLoS One 6(2):e16103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chan G et al (2012) Human cytomegalovirus induction of a unique signalsome during viral entry into monocytes mediates distinct functional changes: a strategy for viral dissemination. J Leukoc Biol 92:743–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hansson GK, Libby P (2006) The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 6(7):508–519

    Article  CAS  PubMed  Google Scholar 

  36. Bentz GL, Yurochko AD (2008) HCMV infection of endothelial cells induces an angiogenic response through viral-binding to the epidermal growth factor receptor and the β1 and β3 integrins. Proc Natl Acad Sci U S A 105:5531–5536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Falk E (2006) Pathogenesis of atherosclerosis. J Am Coll Cardiol 47(8 Suppl):C7–C12

    Article  CAS  PubMed  Google Scholar 

  38. Lusis AJ (2000) Atherosclerosis. Nature 407(6801):233–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Streblow DN et al (1999) The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 99:511–520

    Article  CAS  PubMed  Google Scholar 

  40. Streblow DN, Orloff SL, Nelson JA (2001) Do pathogens accelerate atherosclerosis? J Nutr 131:2798–2804

    Article  Google Scholar 

  41. Li L et al (2016) Lipid metabolism in vascular smooth muscle cells Infuenced by HCMV infection. Cell Physiol Biochem 39(5):1804–1812

    Article  PubMed  CAS  Google Scholar 

  42. Kohno S et al (2018) Lipidomic insight into cardiovascular diseases. Biochem Biophys Res Commun 504(3):590–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Low H et al (2016) Cytomegalovirus restructures lipid rafts via a US28/CDC42-mediated pathway, enhancing cholesterol efflux from host cells. Cell Rep 16(1):186–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jaipersad AS et al (2014) The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol 63(1):1–11

    Article  CAS  PubMed  Google Scholar 

  45. Moroni F et al (2019) The role of monocytes and macrophages in human atherosclerosis, plaque Neoangiogenesis, and Atherothrombosis. Mediat Inflamm 2019:7434376

    Article  CAS  Google Scholar 

  46. Hilgendorf I, Swirski FK, Robbins CS (2015) Monocyte fate in atherosclerosis. Arterioscler Thromb Vasc Biol 35(2):272–279

    Article  CAS  PubMed  Google Scholar 

  47. Chan G, Nogalski MT, Yurochko AD (2012) Human cytomegalovirus stimulates monocyte-to-macrophage differentiation via the temporal regulation of caspace 3. J Virol 92:10714–10723

    Article  CAS  Google Scholar 

  48. Collins-McMillen D et al (2017) Human cytomegalovirus utilizes a nontraditional signal transducer and activator of transcription 1 activation cascade via signaling through epidermal growth factor receptor and integrins to efficiently promote the motility, differentiation, and polarization of infected monocytes. J Virol 91(24):e00622–e00617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Botto S et al (2011) IL-6 in human cytomegalovirus secretome promotes angiogenesis and survival of endothelial cells through the stimulation of survivin. Blood 117(1):352–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhou YF et al (1999) The immediate early gene products of human cytomegalovirus increase vascular smooth muscle cell migration, proliferation, and expression of PDGF beta-receptor. Biochem Biophys Res Commun 256(3):608–613

    Article  CAS  PubMed  Google Scholar 

  51. Khoretonenko MV et al (2010) Cytomegalovirus infection leads to microvascular dysfunction and exacerbates hypercholesterolemia-induced responses. Am J Pathol 177(4):2134–2144

    Article  PubMed  PubMed Central  Google Scholar 

  52. Streblow DN et al (2005) Rat cytomegalovirus-accelerated transplant vascular sclerosis is reduced with mutation of the chemokine-receptor R33. Am J Transplant 5:436–442

    Article  CAS  PubMed  Google Scholar 

  53. Orloff SL et al (2011) Cytomegalovirus latency promotes cardiac lymphoid neogenesis and accelerated allograft rejection in CMV naïve recipients. Am J Transplant 11:45–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Streblow DN et al (2008) The role of angiogenic and wound repair factors during CMV-accelerated transplant vascular sclerosis in rat cardiac transplants. Am J Transplant 8:277–287

    Article  CAS  PubMed  Google Scholar 

  55. Gombos RB et al (2013) Vascular dysfunction in young, mid-aged and aged mice with latent cytomegalovirus infections. Am J Physiol Heart Circ Physiol 304:H183–H194

    Article  CAS  PubMed  Google Scholar 

  56. Tang-Feldman YJ et al (2013) Murine cytomegalovirus (MCMV) infection upregulates P38 MAP kinase in aortas of Apo E KO mice: a molecular mechanism for MCMV-induced acceleration of atherosclerosis. J Cardiovasc Transl Res 6:54–64

    Article  PubMed  Google Scholar 

  57. Bhattacharjee B, Renzette N, Kowalik TF (2012) Genetic analysis of cytomegalovirus in malignant gliomas. J Virol 86:6815–6824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Harkins L et al (2002) Specific localisation of human cytomegalovirus nucleic acids and proteins in human colorectal cancer. Lancet 360(9345):1557–1563

    Article  CAS  PubMed  Google Scholar 

  59. Samanta M et al (2003) High prevalence of human cytomegalovirus in prostatic intraepithelial neoplasia and prostatic carcinoma. J Urol 170(3):998–1002

    Article  PubMed  Google Scholar 

  60. Harkins LE et al (2010) Detection of human cytomegalovirus in normal and neoplastic breast epithelium. Herpesviridae 1(1):8

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cobbs CS et al (2002) Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res 62:3347–3350

    CAS  PubMed  Google Scholar 

  62. Hwang ES et al (2009) Human cytomegalovirus IE1-72 protein interacts with p53 and inhibits p53-dependent transactivation by a mechanism different from that of IE2-86 protein. J Virol 83:12388–12398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shen Y, Zhu H, Shenk T (1997) Human cytomegalovirus IE1 and IE2 proteins are mutagenic and mediate "hit-and-run" oncogenic transformation in cooperation with the adenovirus E1A proteins. Proc Natl Acad Sci U S A 94:3341–3345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xiaofei E et al (2011) An E2F1-mediated DNA damage response contributes to the replication of human cytomegalovirus. PLoS Pathog 7:e1001342

    Article  CAS  Google Scholar 

  65. Castillo JP et al (2005) Human cytomegalovirus IE1-72 activates ataxia telangiectasia mutated kinase and a p53/p21-mediated growth arrest response. J Virol 79:11467–11475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hume AJ, Kalejta RF (2009) Regulation of the retinoblastoma proteins by the human herpesviruses. Cell Div 4:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Iwahori S et al (2015) Molecular determinants for the inactivation of the retinoblastoma tumor suppressor by the viral cyclin-dependent kinase UL97. J Biol Chem 290(32):19666–19680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Iwahori S, Kalejta RF (2017) Phosphorylation of transcriptional regulators in the retinoblastoma protein pathway by UL97, the viral cyclin-dependent kinase encoded by human cytomegalovirus. Virology 512:95–103

    Article  CAS  PubMed  Google Scholar 

  69. Iwahori S et al (2017) Human cytomegalovirus-encoded viral cyclin-dependent kinase (v-CDK) UL97 phosphorylates and inactivates the retinoblastoma protein-related p107 and p130 proteins. J Biol Chem 292(16):6583–6599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Spector DH (2015) Human cytomegalovirus riding the cell cycle. Med Microbiol Immunol 204(3):409–419

    Article  CAS  PubMed  Google Scholar 

  71. Steingruber M et al (2019) Cyclins B1, T1, and H differ in their molecular mode of interaction with cytomegalovirus protein kinase pUL97. J Biol Chem 294(15):6188–6203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Maussang D et al (2006) Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. Proc Natl Acad Sci U S A 103(35):13068–13073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kumar A et al (2018) The human cytomegalovirus strain DB activates oncogenic pathways in mammary epithelial cells. EBioMedicine 30:167–183

    Article  PubMed  PubMed Central  Google Scholar 

  74. Moussawi FA et al (2018) The transcriptome of human mammary epithelial cells infected with the HCMV-DB strain displays oncogenic traits. Sci Rep 8(1):12574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Soroceanu L, Cobbs CS (2011) Is HCMV a tumor promoter? Virus Res 157(2):193–203

    Article  CAS  PubMed  Google Scholar 

  76. Cinatl J Jr et al (1996) Modulatory effects of human cytomegalovirus infection on malignant properties of cancer cells. Intervirology 39(4):259–269

    Article  PubMed  Google Scholar 

  77. Barami K (2010) Oncomodulatory mechanisms of human cytomegalovirus in gliomas. J Clin Neurosci 17:819–823

    Article  CAS  PubMed  Google Scholar 

  78. Söderberg-Nauclér C, Johnsen JI (2012) Cytomegalovirus infection in brain tumors: a potential new target for therapy? Onco Targets Ther 1:739–740

    Google Scholar 

  79. Yang Z et al (2019) Latent cytomegalovirus infection in female mice increases breast cancer metastasis. Cancers (Basel) 11(4):447

    Article  CAS  PubMed Central  Google Scholar 

  80. Krenzlin H et al (2019) Cytomegalovirus promotes murine glioblastoma growth via pericyte recruitment and angiogenesis. J Clin Invest 130:1671–1683

    Article  Google Scholar 

  81. Heukers R et al (2018) The constitutive activity of the virally encoded chemokine receptor US28 accelerates glioblastoma growth. Oncogene 37(30):4110–4121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mitchell DA et al (2008) Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. Neuro-Oncology 10(1):10–18

    Article  PubMed  PubMed Central  Google Scholar 

  83. Scheurer ME et al (2008) Detection of human cytomegalovirus in different histological types of gliomas. Acta Neuropathol 116(1):79–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shen CY et al (1993) High rate of concurrent genital infections with human cytomegalovirus and human papillomaviruses in cervical cancer patients. J Infect Dis 168(2):449–452

    Article  CAS  PubMed  Google Scholar 

  85. Rahbar A et al (2012) Low levels of human cytomegalovirus infection in glioblastoma multiforme associates with patient survival; -a case-control study. Herpesviridae 3:3

    Article  PubMed  PubMed Central  Google Scholar 

  86. Herbein G (2018) The human cytomegalovirus, from oncomodulation to oncogenesis. Viruses 10(8):408

    Article  PubMed Central  CAS  Google Scholar 

  87. Dumortier J et al (2008) Human cytomegalovirus secretome contains factors that induce angiogenesis and wound healing. J Virol 82:6524–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fortunato EA, Spector DH (2003) Viral induction of site-specific chromosome damage. Rev Med Virol 13:21–37

    Article  PubMed  Google Scholar 

  89. Fowler KB, Boppana SB (2018) Congenital cytomegalovirus infection. Semin Perinatol 42(3):149–154

    Article  PubMed  Google Scholar 

  90. Britt WJ (2018) Maternal immunity and the natural history of congenital human cytomegalovirus infection. Viruses 10(8):405

    Article  PubMed Central  CAS  Google Scholar 

  91. Adler SP (2005) Congenital cytomegalovirus screening. Pediatr Infect Dis J 24(12):1105–1106

    Article  PubMed  Google Scholar 

  92. Adler SP (2011) Screening for cytomegalovirus during pregnancy. Infect Dis Obstet Gynecol 2011:1–9

    Article  PubMed  Google Scholar 

  93. Nigro G, Adler SP (2011) Cytomegalovirus infections during pregnancy. Curr Opin Obstet Gynecol 23:123–128

    Article  PubMed  Google Scholar 

  94. Marshall BC, Adler SP (2009) The frequency of pregnancy and exposure to cytomegalovirus infections among women with a young child in day care. Am J Obstet Gynecol 200:163.e1–163.e5

    Article  Google Scholar 

  95. Mussi-Pinhata MM et al (2018) Seroconversion for cytomegalovirus infection during pregnancy and fetal infection in a highly seropositive population: "the BraCHS study". J Infect Dis 218(8):1200–1204

    Article  PubMed  PubMed Central  Google Scholar 

  96. Vancikova Z, Dvorak P (2001) Cytomegalovirus infection in immunocompetent and immunocompromised individuals—a review. Curr Drug Targets Immune Endocr Metabol Disord 1(2):179–187

    Article  CAS  PubMed  Google Scholar 

  97. Mussi-Pinhata MM et al (2009) Birth prevalence and natural history of congenital cytomegalovirus infection in a highly seroimmune population. Clin Infect Dis 49:522–528

    Article  PubMed  Google Scholar 

  98. Naing ZW et al (2016) Congenital cytomegalovirus infection in pregnancy: a review of prevalence, clinical features, diagnosis and prevention. Aust N Z J Obstet Gynaecol 56(1):9–18

    Article  PubMed  Google Scholar 

  99. Dreher AM et al (2014) Spectrum of disease and outcome in children with symptomatic congenital cytomegalovirus infection. J Pediatr 164(4):855–859

    Article  PubMed  PubMed Central  Google Scholar 

  100. Boppana SB et al (1992) Symptomatic congenital cytomegalovirus infection: neonatal morbidity and mortality. Pediatr Infect Dis J 11(2):93–99

    Article  CAS  PubMed  Google Scholar 

  101. Fowler KB et al (1992) The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N Engl J Med 326(10):663–667

    Article  CAS  PubMed  Google Scholar 

  102. Nassetta L, Kimberlin D, Whitley R (2009) Treatment of congenital cytomegalovirus infection: implications for future therapeutic strategies. J Antimicrob Chemother 63:862–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bale JF Jr, Blackman JA, Sato Y (1990) Outcome in children with symptomatic congenital cytomegalovirus infection. J Child Neurol 5(2):131–136

    Article  PubMed  Google Scholar 

  104. Williamson WD et al (1990) Asymptomatic congenital cytomegalovirus infection. Audiologic, neuroradiologic, and neurodevelopmental abnormalities during the first year. Am J Dis Child 144(12):1365–1368

    Article  CAS  PubMed  Google Scholar 

  105. Saigal S et al (1982) The outcome in children with congenital cytomegalovirus infection. A longitudinal follow-up study. Am J Dis Child 136(10):896–901

    Article  CAS  PubMed  Google Scholar 

  106. Yamamoto AY et al (2019) Contribution of congenital cytomegalovirus (cCMV) to permanent hearing loss in a highly seropositive population: "the BraCHS study". Clin Infect Dis 70(7):1379–1384

    Article  PubMed Central  Google Scholar 

  107. Boppana SB, Fowler KB (2017) Insight into long-term neurodevelopmental outcomes in asymptomatic congenital cmv infection. Pediatrics 140(5):e20172526

    Article  PubMed  Google Scholar 

  108. Stagno S et al (1986) Primary cytomegalovirus infection in pregnancy. Incidence, transmission to fetus, and clinical outcome. JAMA 256(14):1904–1908

    Article  CAS  PubMed  Google Scholar 

  109. Britt W (2015) Controversies in the natural history of congenital human cytomegalovirus infection: the paradox of infection and disease in offspring of women with immunity prior to pregnancy. Med Microbiol Immunol 204(3):263–271

    Article  CAS  PubMed  Google Scholar 

  110. Townsend CL et al (2013) Long-term outcomes of congenital cytomegalovirus infection in Sweden and the United Kingdom. Clin Infect Dis 56(9):1232–1239

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ygberg S, Nilsson A (2012) The developing immune system—from foetus to toddler. Acta Paediatr 101(2):120–127

    Article  CAS  PubMed  Google Scholar 

  112. Stagno S et al (1982) Maternal cytomegalovirus infection and perinatal transmission. Clin Obstet Gynecol 25(3):563–576

    Article  CAS  PubMed  Google Scholar 

  113. Cannon MJ, Hyde TB, Schmid DS (2011) Review of cytomegalovirus shedding in bodily fluids and relevance to congenital cytomegalovirus infection. Rev Med Virol 21:240–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Reynolds DW et al (1973) Maternal cytomegalovirus excretion and perinatal infection. N Engl J Med 289(1):1–5

    Article  CAS  PubMed  Google Scholar 

  115. Hamprecht K, Goelz R (2017) Postnatal cytomegalovirus infection through human Milk in preterm infants: transmission, clinical presentation, and prevention. Clin Perinatol 44(1):121–130

    Article  PubMed  Google Scholar 

  116. Dworsky M et al (1983) Cytomegalovirus infection of breast milk and transmission in infancy. Pediatrics 72(3):295–299

    Article  CAS  PubMed  Google Scholar 

  117. Jim WT et al (2004) Transmission of cytomegalovirus from mothers to preterm infants by breast milk. Pediatr Infect Dis J 23(9):848–851

    Article  PubMed  Google Scholar 

  118. Vochem M et al (1998) Transmission of cytomegalovirus to preterm infants through breast milk. Pediatr Infect Dis J 17(1):53–58

    Article  CAS  PubMed  Google Scholar 

  119. Chiba S et al (1975) Primary cytomegalovirus infection and liver involvement in early infancy. Tohoku J Exp Med 117(2):143–151

    Article  CAS  PubMed  Google Scholar 

  120. Stagno S et al (1981) Infant pneumonitis associated with cytomegalovirus, chlamydia, pneumocystis, and Ureaplasma: a prospective study. Pediatrics 68(3):322–329

    Article  CAS  PubMed  Google Scholar 

  121. Kumar ML et al (1984) Postnatally acquired cytomegalovirus infections in infants of CMV-excreting mothers. J Pediatr 104(5):669–673

    Article  CAS  PubMed  Google Scholar 

  122. Ballard RA et al (1979) Acquired cytomegalovirus infection in preterm infants. Am J Dis Child 133(5):482–485

    CAS  PubMed  Google Scholar 

  123. Yeager AS et al (1981) Prevention of transfusion-acquired cytomegalovirus infections in newborn infants. J Pediatr 98(2):281–287

    Article  CAS  PubMed  Google Scholar 

  124. Hamprecht K et al (2001) Epidemiology of transmission of cytomegalovirus from mother to preterm infant by breastfeeding. Lancet 357(9255):513–518

    Article  CAS  PubMed  Google Scholar 

  125. Eisenfeld L et al (1992) Prevention of transfusion-associated cytomegalovirus infection in neonatal patients by the removal of white cells from blood. Transfusion 32(3):205–209

    Article  CAS  PubMed  Google Scholar 

  126. Gilbert GL et al (1989) Prevention of transfusion-acquired cytomegalovirus infection in infants by blood filtration to remove leucocytes. Neonatal Cytomegalovirus Infection Study Group. Lancet 1(8649):1228–1231

    Article  CAS  PubMed  Google Scholar 

  127. Zheng QY et al (2019) Cytomegalovirus infection in day care centres: a systematic review and meta-analysis of prevalence of infection in children. Rev Med Virol 29(1):e2011

    Article  PubMed  Google Scholar 

  128. Chou SW (1986) Acquisition of donor strains of cytomegalovirus by renal-transplant recipients. N Engl J Med 314(22):1418–1423

    Article  CAS  PubMed  Google Scholar 

  129. Drew WL et al (1984) Multiple infections by cytomegalovirus in patients with acquired immunodeficiency syndrome: documentation by southern blot hybridization. J Infect Dis 150(6):952–953

    Article  CAS  PubMed  Google Scholar 

  130. Grundy JE et al (1988) Symptomatic cytomegalovirus infection in seropositive kidney recipients: reinfection with donor virus rather than reactivation of recipient virus. Lancet 2(8603):132–135

    Article  CAS  PubMed  Google Scholar 

  131. Vinuesa V et al (2017) The impact of virus population diversity on the dynamics of cytomegalovirus DNAemia in allogeneic stem cell transplant recipients. J Gen Virol 98(10):2530–2542

    Article  CAS  PubMed  Google Scholar 

  132. Cudini J et al (2019) Human cytomegalovirus haplotype reconstruction reveals high diversity due to superinfection and evidence of within-host recombination. Proc Natl Acad Sci U S A 116(12):5693–5698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Snydman DR et al (1987) Use of cytomegalovirus immune globulin to prevent cytomegalovirus disease in renal-transplant recipients. N Engl J Med 317(17):1049–1054

    Article  CAS  PubMed  Google Scholar 

  134. Walter EA et al (1995) Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333(16):1038–1044

    Article  CAS  PubMed  Google Scholar 

  135. Sissons JG, Wills MR (2015) How understanding immunology contributes to managing CMV disease in immunosuppressed patients: now and in future. Med Microbiol Immunol 204(3):307–316

    Article  CAS  PubMed  Google Scholar 

  136. Klenerman P, Oxenius A (2016) T cell responses to cytomegalovirus. Nat Rev Immunol 16(6):367–377

    Article  CAS  PubMed  Google Scholar 

  137. Plotkin SA et al (1984) Towne-vaccine-induced prevention of cytomegalovirus disease after renal transplants. Lancet 1(8376):528–530

    Article  CAS  PubMed  Google Scholar 

  138. Plotkin SA, Boppana SB (2018) Vaccination against the human cytomegalovirus. Vaccine 37(50):7437–7442

    Article  PubMed  CAS  Google Scholar 

  139. McCormick AL, Mocarski ES (2015) The immunological underpinnings of vaccinations to prevent cytomegalovirus disease. Cell Mol Immunol 12(2):170–179

    Article  PubMed  CAS  Google Scholar 

  140. Erice A et al (1997) Antiviral susceptibilities and analysis of UL97 and DNA polymerase sequences of clinical cytomegalovirus isolates from immunocompromised. patients. J Infect Dis 175(5):1087–1092

    Article  CAS  PubMed  Google Scholar 

  141. Griffiths P (2019) New vaccines and antiviral drugs for cytomegalovirus. J Clin Virol 116:58–61

    Article  CAS  PubMed  Google Scholar 

  142. Legendre CM et al (2000) Valaciclovir prophylaxis of cytomegalovirus infection and disease in renal transplantation: an economic evaluation. Transplantation 70(10):1463–1468

    Article  CAS  PubMed  Google Scholar 

  143. Mauskopf JA et al (2000) Cost-effectiveness model of cytomegalovirus management strategies in renal transplantation. Comparing valaciclovir prophylaxis with current practice. PharmacoEconomics 18(3):239–251

    Article  CAS  PubMed  Google Scholar 

  144. Webb BJ et al (2018) The clinical and economic impact of cytomegalovirus infection in recipients of hematopoietic stem cell transplantation. Transpl Infect Dis 20(5):e12961

    Article  PubMed  CAS  Google Scholar 

  145. Restelli U et al (2019) Cost-effectiveness analysis of the use of letermovir for the prophylaxis of cytomegalovirus in adult cytomegalovirus seropositive recipients undergoing allogenic hematopoietic stem cell transplantation in Italy. Infect Drug Resist 12:1127–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pande A, Dubberke ER (2019) Cytomegalovirus infections of the stem cell transplant recipient and hematologic malignancy patient. Infect Dis Clin N Am 33(2):485–500

    Article  Google Scholar 

  147. Ramanan P, Razonable RR (2013) Cytomegalovirus infections in solid organ transplantation: a review. Infect Chemother 45(3):260–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Eid AJ, Razonable RR (2010) New developments in the management of cytomegalovirus infection after solid organ transplantation. Drugs 70:965–981

    Article  CAS  PubMed  Google Scholar 

  149. Hodowanec AC et al (2019) Treatment and prevention of CMV disease in transplant recipients: current knowledge and future perspectives. J Clin Pharmacol 59(6):784–798

    Article  CAS  PubMed  Google Scholar 

  150. Hebart H et al (1998) Management of cytomegalovirus infection after solid-organ or stem-cell transplantation. Current guidelines and future prospects. Drugs 55(1):59–72

    Article  CAS  PubMed  Google Scholar 

  151. Prentice HG, Kho P (1997) Clinical strategies for the management of cytomegalovirus infection and disease in allogeneic bone marrow transplant. Bone Marrow Transplant 19(2):135–142

    Article  CAS  PubMed  Google Scholar 

  152. Boeckh M, Geballe AP (2011) Cytomegalovirus: pathogen, paradigm, and puzzle. J Clin Invest 121:1673–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ljungman P, Hakki M, Boeckh M (2011) Cytomegalovirus in hematopoietic stem cell transplant recipients. Hematol Oncol Clin North Am 25:151–169

    Article  PubMed  PubMed Central  Google Scholar 

  154. Kowalsky S, Arnon R, Posada R (2013) Prevention of cytomegalovirus following solid organ transplantation: a literature review. Pediatr Transplant 17:499–509

    Article  PubMed  Google Scholar 

  155. Ljungman P (1996) Cytomegalovirus infections in transplant patients. Scand J Infect Dis Suppl 100:59–63

    CAS  PubMed  Google Scholar 

  156. Akalin E et al (2003) Cytomegalovirus disease in high-risk transplant recipients despite ganciclovir or valganciclovir prophylaxis. Am J Transplant 3(6):731–735

    Article  PubMed  Google Scholar 

  157. Limaye AP et al (2004) Late-onset cytomegalovirus disease in liver transplant recipients despite antiviral prophylaxis. Transplantation 78(9):1390–1396

    Article  PubMed  Google Scholar 

  158. Razonable RR et al (2001) Allograft rejection predicts the occurrence of late-onset cytomegalovirus (CMV) disease among CMV-mismatched solid organ transplant patients receiving prophylaxis with oral ganciclovir. J Infect Dis 184(11):1461–1464

    Article  CAS  PubMed  Google Scholar 

  159. Boeckh M et al (2003) Late cytomegalovirus disease and mortality in recipients of allogeneic hematopoietic stem cell transplants: importance of viral load and T-cell immunity. Blood 101(2):407–414

    Article  CAS  PubMed  Google Scholar 

  160. Barry PA et al (1990) Cytomegalovirus activates transcription directed by the long terminal repeat of human immunodeficiency virus type 1. J Virol 64(6):2932–2940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. McKeating JA, Griffiths PD, Weiss RA (1990) HIV susceptibility conferred to human fibroblasts by cytomegalovirus-induced Fc receptor. Nature 343(6259):659–661

    Article  CAS  PubMed  Google Scholar 

  162. Griffiths PD (2006) CMV as a cofactor enhancing progression of AIDS. J Clin Virol 35:489–492

    Article  CAS  PubMed  Google Scholar 

  163. Ostrowski MA et al (1998) Effect of immune activation on the dynamics of human immunodeficiency virus replication and on the distribution of viral quasispecies. J Virol 72(10):7772–7784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Gallant JE et al (1992) Incidence and natural history of cytomegalovirus disease in patients with advanced human immunodeficiency virus disease treated with zidovudine. The Zidovudine Epidemiology Study Group. J Infect Dis 166(6):1223–1227

    Article  CAS  PubMed  Google Scholar 

  165. Cheung TW, Teich SA (1999) Cytomegalovirus infection in patients with HIV infection. Mt Sinai J Med 66(2):113–124

    CAS  PubMed  Google Scholar 

  166. Adachi K et al (2018) Congenital cytomegalovirus and HIV perinatal transmission. Pediatr Infect Dis J 37(10):1016–1021

    Article  PubMed  PubMed Central  Google Scholar 

  167. Deayton J et al (1999) Loss of cytomegalovirus (CMV) viraemia following highly active antiretroviral therapy in the absence of specific anti-CMV therapy. AIDS 13(10):1203–1206

    Article  CAS  PubMed  Google Scholar 

  168. O’Sullivan CE et al (1999) Decrease of cytomegalovirus replication in human immunodeficiency virus infected-patients after treatment with highly active antiretroviral therapy. J Infect Dis 180(3):847–849

    Article  PubMed  Google Scholar 

  169. Jacobson MA et al (2001) Cytomegalovirus (CMV)-specific CD4+ T lymphocyte immune function in long-term survivors of AIDS-related CMV end-organ disease who are receiving potent antiretroviral therapy. J Infect Dis 183:1399–1404

    Article  CAS  PubMed  Google Scholar 

  170. Spector SA et al (1999) Cytomegalovirus (CMV) DNA load is an independent predictor of CMV disease and survival in advanced AIDS. J Virol 73:7027–7030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Deayton JR et al (2004) Importance of cytomegalovirus viraemia in risk of disease progression and death in HIV-infected patients receiving highly active antiretroviral therapy. Lancet 363:2116–2121

    Article  CAS  PubMed  Google Scholar 

  172. Hodowanec AC et al (2019) Increased CMV IgG antibody titer is associated with non-AIDS events among virologically suppressed HIV-positive persons. Pathog Immun 4(1):66–78

    Article  PubMed  PubMed Central  Google Scholar 

  173. Zicari S et al (2019) Immune Activation, Inflammation, and non-AIDS Co-morbidities in HIV-infected patients under long-term ART. Viruses 11(3):200

    Article  CAS  PubMed Central  Google Scholar 

  174. Maidji E et al (2017) Replication of CMV in the gut of HIV-infected individuals and epithelial barrier dysfunction. PLoS Pathog 13(2):e1006202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Christensen-Quick A et al (2017) Cytomegalovirus and HIV persistence: pouring gas on the fire. AIDS Res Hum Retrovir 33(S1):S23–S30

    Article  PubMed  CAS  Google Scholar 

  176. Gianella S, Letendre S (2016) Cytomegalovirus and HIV: a dangerous pas de Deux. J Infect Dis 214(Suppl 2):S67–S74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Dock JN, Effros RB (2011) Role of CD8 T cell replicative senescence in human aging and in HIV-mediated immunosenescence. Aging Dis 2:382–397

    PubMed  PubMed Central  Google Scholar 

  178. Effros RB (2016) The silent war of CMV in aging and HIV infection. Mech Ageing Dev 158:46–52

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health NIAID P01 AI127335, AI056077, P30GM110703, P20GM121288, P20GM121307, and a Malcolm Feist Predoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Yurochko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fulkerson, H.L., Nogalski, M.T., Collins-McMillen, D., Yurochko, A.D. (2021). Overview of Human Cytomegalovirus Pathogenesis. In: Yurochko, A.D. (eds) Human Cytomegaloviruses. Methods in Molecular Biology, vol 2244. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1111-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1111-1_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1110-4

  • Online ISBN: 978-1-0716-1111-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics