Skip to main content
Log in

Does a voltage-sensitive outer envelope transport mechanism contributes to the chloroplast iron uptake?

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Based on the effects of inorganic salts on chloroplast Fe uptake, the presence of a voltage-dependent step is proposed to play a role in Fe uptake through the outer envelope.

Although iron (Fe) plays a crucial role in chloroplast physiology, only few pieces of information are available on the mechanisms of chloroplast Fe acquisition. Here, the effect of inorganic salts on the Fe uptake of intact chloroplasts was tested, assessing Fe and transition metal uptake using bathophenantroline-based spectrophotometric detection and plasma emission-coupled mass spectrometry, respectively. The microenvironment of Fe was studied by Mössbauer spectroscopy. Transition metal cations (Cd2+, Zn2+, and Mn2+) enhanced, whereas oxoanions (NO3 , SO4 2−, and BO3 3−) reduced the chloroplast Fe uptake. The effect was insensitive to diuron (DCMU), an inhibitor of chloroplast inner envelope-associated Fe uptake. The inorganic salts affected neither Fe forms in the uptake assay buffer nor those incorporated into the chloroplasts. The significantly lower Zn and Mn uptake compared to that of Fe indicates that different mechanisms/transporters are involved in their acquisition. The enhancing effect of transition metals on chloroplast Fe uptake is likely related to outer envelope-associated processes, since divalent metal cations are known to inhibit Fe2+ transport across the inner envelope. Thus, a voltage-dependent step is proposed to play a role in Fe uptake through the chloroplast outer envelope on the basis of the contrasting effects of transition metal cations and oxoaninons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

apoLhcII:

Light Harvesting Complex II apoprotein

CCCP:

Carbonyl cyanide m-chlorophenyl-hydrazone

DCMU:

3-(3,4-Dichlorophenyl)-1,1-dimethylurea

ΔΨ:

Transmembrane electrochemical potential

IE:

Inner envelope

OE:

Outer envelope

RbcL:

Rubisco large subunit

References

  • Abadía J, Vázquez S, Rellán-Álvarez R, El-Jendoubi H, Abadía A, Álvarez-Fernández A, López-Millán A-F (2011) Towards a knowledge-based correction of iron chlorosis. Plant Physiol Biochem 49:471–482

    Article  PubMed  Google Scholar 

  • Abdel-Ghany SE, Ye H, Garifullina GF, Zhang L, Pilon-Smits EAH, Pilon M (2005) Iron-sulfur cluster biogenesis in chloroplasts. Involvement of the scaffold protein CpIscA1. Plant Physiol 138:161–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Álvarez-Fernández A, Díaz-Benito P, Abadía A, López-Millán AF, Abadía J (2014) Metal species involved in long distance metal transport in plants. Front Plant Sci 5:105

    Article  PubMed  PubMed Central  Google Scholar 

  • Andaluz S, López-Millán A-F, De las Rivas J, Aro E-M, Abadía J, Abadía A (2006) Proteomic profiles of thylakoid membranes and changes in response to iron deficiency. Photosynth Res 89:141–155

    Article  CAS  PubMed  Google Scholar 

  • Basa B, Lattanzio G, Solti Á, Tóth B, Abadía J, Fodor F, Sárvári É (2014) Changes induced by cadmium stress and iron deficiency in the composition and organization of thylakoid complexes in sugar beet (Beta vulgaris L.). Environ Exp Bot 101:1–11

    Article  CAS  Google Scholar 

  • Bölter B, Soll J (2001) Ion channels in the outer membranes of chloroplasts and mitochondria: open doors or regulated gates? EMBO J 20:935–940

    Article  PubMed  PubMed Central  Google Scholar 

  • Braun V (2003) Iron uptake by Escherichia coli. Front Biosci 8:1409–1421

    Article  Google Scholar 

  • Braun V (2014) Energy-coupled transport across the outer membrane of Gram-negative bacteria. In: Remaut H, Frozens R (eds) Bacterial membranes: Structural and molecular biology. Caister Academic Press, Norfolk, pp 249–282

    Google Scholar 

  • Braun V, Hantke K (2011) Recent insights into iron import by bacteria. Curr Opin Chem Biol 15:328–334

    Article  CAS  PubMed  Google Scholar 

  • Braun V, Herrmann C (2007) Docking of the periplasmic FecB binding protein to the FecCD transmembrane proteins in the ferric citrate transport system of Escherichia coli. J Bacteriol 189:6913–6918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breuers FKH, Bräutigam A, Weber APM (2011) The plastid outer envelope–a highly dynamic interface between plastid and cytoplasm. Front Plant Scie 2:97

    CAS  Google Scholar 

  • Bughio N, Takahashi M, Yoshimuri E, Nishizawa N-K, Mori S (1997) Light-dependent iron transport into isolated barley chloroplasts. Plant Cell Physiol 38:101–105

    Article  CAS  Google Scholar 

  • Castagna A, Donnini S, Ranieri A (2009) Adaptation to iron-deficiency requires remodelling of plant metabolism: an insight in chloroplast biochemistry and functionality. In: Ashraf M, Ozturk, H-u-R Athar M (eds) Salinity and water stress. Springer Verlag, Dordrecht, p 205–212

  • Clausen C, Ilkavets I, Thomson R, Philippar K, Vojta A, Möhlmann T, Neuhaus E, Fulgosi H, Soll J (2004) Intracellular localization of VDAC proteins in plants. Planta 220:30–37

    Article  CAS  PubMed  Google Scholar 

  • Duy D, Soll J, Philippar K (2007a) Solute channels of the outer membrane: from bacteria to chloroplasts. Biol Chem 388:879–889

    Article  CAS  PubMed  Google Scholar 

  • Duy D, Wanner G, Meda AR, von Wirén N, Soll J, Philippar K (2007b) PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport. Plant Cell 19:986–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duy D, Stübe R, Wanner G, Philippar K (2011) The chloroplast permease PIC1 regulates plant growth and development by directing homeostasis and transport of iron. Plant Physiol 155:1709–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finazzi G, Petroutsos D, Tomizioli M, Flori S, Sautron E, Villanova V, Rolland N, Seigneurin-Berny D (2014) Ions channels/transporters and chloroplast regulation. Cell Calcium. doi:10.1016/j.ceca.2014.10.002

    PubMed  Google Scholar 

  • Fodor F (2002) Physiological responses of vascular plants to heavy metals. In: Prasad MNV, Strzalka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer Academic Publisher, The Netherlands, pp 149–177

    Chapter  Google Scholar 

  • Greenwood NN, Gibb TC (1971) Mössbauer spectroscopy. Chapman and Hall, London

    Book  Google Scholar 

  • Gutierrez-Carbonell E, Takahashi D, Lattanzio G, Rodríguez-Celma J, Kehr J, Soll J, Philippar K, Uemura M, Abadía J, López-Millán AF (2014) The distinct functional roles of the inner and outer chloroplast envelope of pea (Pisum sativum) as revealed by proteomic approaches. J Prot Res 13:2941–2953

    Article  CAS  Google Scholar 

  • Homblé F, Krammer E-M, Prévost M (2012) Plant VDAC: facts and speculations. Biochim Biophys Acta 1818:1486–1501

    Article  PubMed  Google Scholar 

  • Inoue K (2007) The chloroplast outer envelope membrane: The edge of light and excitement. J Integrat Plant Biol 49:1100–1111

    Article  Google Scholar 

  • Inoue K (2011) Emerging roles of the chloroplast outer envelope membrane. Trend Plant Sci 16:1360–1385

    Article  Google Scholar 

  • Jeong J, Cohu C, Kerkeb L, Pilon M, Connolly EL, Guerinot ML (2008) Chloroplast Fe(III) chelate reductase activity is essential for seedling viability under iron limiting conditions. Proc Natl Acad Sci USA 105:10619–10624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YY, Choi H, Segami S, Cho HT, Martinoia E, Maeshima M, Lee Y (2009) AtHMA1 contributes to the detoxification of excess Zn(II) in Arabidopsis. Plant J 58:737–753

    Article  CAS  PubMed  Google Scholar 

  • Klencsár Z, Kuzmann E, Vértes A (1996) User-friendly software for Mössbauer spectrum analysis. J Radioanal Nucl Chem 210:105–118

    Article  Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152

    Article  CAS  PubMed  Google Scholar 

  • Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    Article  PubMed  Google Scholar 

  • Lang EG, Mueller SJ, Hoernstein SN, Porankiewicz-Asplund J, Vervliet-Scheebaum M, Reski R (2011) Simultaneous isolation of pure and intact chloroplasts and mitochondria from moss as the basis for subcellular proteomics. Plant Cell Rep 30:205–215

    Article  CAS  PubMed  Google Scholar 

  • Latifi A, Jeanjean R, Lemeille S, Havaux M, Zhang C-C (2005) Iron starvation leads to oxidative stress in Anabaena sp. strain PCC 7120. J Bacteriol 187:6596–6598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Millán AF, Duy D, Philippar K (2016) Chloroplast iron transport proteins–function and impact on plant physiology. Front Plant Sci 7:178

    Article  PubMed  PubMed Central  Google Scholar 

  • Marshall B, Stintzi A, Gilmour G, Meyer J-M, Poole K (2009) Citrate-mediated iron uptake in Pseudomonas aeruginosa: involvement of the citrate-inducible FecA receptor and the FeoB ferrous iron transporter. Microbiol 155:305–315

    Article  CAS  Google Scholar 

  • Moreau S, Day DA, Puppo A (1998) Ferrous iron is transported across the peribacteroid membrane of soybean nodules. Planta 207:83–87

    Article  CAS  Google Scholar 

  • Morrissey J, Guerinot ML (2009) Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109:4553–4567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolić M, Römheld V (2007) The dynamics of iron in the leaf apoplast significance for the iron nutrition of plants. In: Sattelmacher B, Horst WJ (eds) The apoplast of higher plants: Compartment of storage, transport and reactions. The significance of the apoplast for the mineral nutrition of higher plants. Springer Verlag, Dordrecht, pp 353–371

    Google Scholar 

  • Nouet C, Motte P, Hanikenne M (2011) Chloroplastic and mitochondrial metal homeostasis. Trend Plant Sci 16:1360–1385

    Article  Google Scholar 

  • Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5:333–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548

    Article  CAS  PubMed  Google Scholar 

  • Pilon M, Cohu CM, Ravet K, Abdel-Ghany SE, Gaymard F (2009) Essential transition metal homeostasis in plants. Curr Opin Plant Biol 12:347–357

    Article  CAS  PubMed  Google Scholar 

  • Pottosin I, Dobrovinskaya O (2015) Ion channels in native chloroplast membranes: challenges and potential for direct patch-clamp studies. Front Physiol 6:396

    Article  PubMed  PubMed Central  Google Scholar 

  • Rellán-Alvarez R, Giner-Martínez-Sierra J, Orduna J, Orera I, Rodríguez-Castrillón JA, García-Alonso JI, Abadía J, Alvarez-Fernández A (2010) Identification of a tri-iron(III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: new insights into plant iron long-distance transport. Plant Cell Physiol 51:91–102

    Article  PubMed  Google Scholar 

  • Reumann S, Keegstra K (1999) The endosymbiotic origin of the protein import machinery of chloroplastic envelope membranes. Trend Plant Sci 4:1360–1385

    Article  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pazmiňo DM, Testillano PS, Risueňo MC, del Río LA, Sandalio LM (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150:229–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Röhl T, Motzkus M, Soll J (1999) The outer envelope protein OEP24 from pea chloroplasts can functionally replace the mitochondrial VDAC in yeast. FEBS Lett 460:491–494

    Article  PubMed  Google Scholar 

  • Shcolnick S, Keren N (2006) Metal homeostasis in cyanobacteria and chloroplasts. Balancing benefits and risks to the photosynthetic apparatus. Plant Physiol 141:805–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shingles R, McCarty RE (1994) Direct measurement of ATP-dependent proton concentration changes and characterization of a K+-stimulated ATPase in pea chloroplast inner envelope vesicles. Plant Physiol 106:731–737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shingles R, North M, McCarty RE (2002) Ferrous ion transport across chloroplast inner envelope membranes. Plant Physiol 128:1022–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith GF, McCurdy WH, Diehl H (1952) The colorimetric determination of iron in raw and treated municipal water supplies by use of 4:7-diphenyl-1:10-phenanthroline. Analyst 77:418–422

    Article  CAS  Google Scholar 

  • Soll J, Bölter B, Wagner R, Hinnah SC (2000) The chloroplast outer envelope: a molecular sieve? Trends Plant Sci 5:137–138

    Article  CAS  PubMed  Google Scholar 

  • Solti Á, Kovács K, Basa B, Vértes A, Sárvári É, Fodor F (2012) Iron uptake of chloroplasts: kinetics, mechanism and incorporation. Plant Physiol Biochem 52:91–97

    Article  CAS  PubMed  Google Scholar 

  • Solti Á, Müller B, Czech V, Sárvári É, Fodor F (2014) Functional characterization of the chloroplast ferric chelate oxidoreductase enzyme. New Phytol 202:920–928

    Article  CAS  PubMed  Google Scholar 

  • Teng Y-S, Su Y-A, Chen L-J, Lee YJ, Hwang I, Li H-M (2006) Tic21 is an essential translocon component for protein translocation across the chloroplast inner envelope membrane. Plant Cell 18:2247–2257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terry N, Abadia J (1986) Function of iron in chloroplasts. J Plant Nutr 9:609–646

    Article  CAS  Google Scholar 

  • Tewari RK, Kumar P, Neetu Sharma PN (2005) Signs of oxidative stress in the chlorotic leaves of iron starved plants. Plant Sci 169:1037–1045

    Article  CAS  Google Scholar 

  • Timperio AM, D’Amici GM, Barta C, Loret F, Zolla L (2007) Proteomics, pigment composition, and organization of thylakoid membranes in iron-deficient spinach leaves. J Exp Bot 58:3695–3710

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Kinraide TB, Zhou D, Kopittke PM, Peijnenburg WJGM (2011) Plasma membrane surface potential: dual effects upon ion uptake and toxicity. Plant Physiol 155:808–820

    Article  CAS  PubMed  Google Scholar 

  • Weber G, von Wirén N, Hayen H (2007) Investigation of ascorbate-mediated iron release from ferric phytosiderophores in the presence of nicotianamine. Biometals 21:503–513

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grants financed by the National Office for Research, Development, and Innovation, Hungary (OTKA-NKFIH PD-112047 and PD-111979), the Spanish Ministry of Economy and Competitivity (Project AGL2013–42175-R, co-financed with FEDER) and the Aragón Government (Group A03) to J.A. Á.S. was also supported by the Bolyai János Research Scholarship of the Hungarian Academy of Sciences (BO/00207/15/4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ádám Solti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2069 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solti, Á., Kovács, K., Müller, B. et al. Does a voltage-sensitive outer envelope transport mechanism contributes to the chloroplast iron uptake?. Planta 244, 1303–1313 (2016). https://doi.org/10.1007/s00425-016-2586-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2586-3

Keywords

Navigation