Skip to main content

Advertisement

Log in

Proteomic profiles of thylakoid membranes and changes in response to iron deficiency

  • Original Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The proteomic profile of thylakoid membranes and the changes induced in that proteome by iron deficiency have been studied by using thylakoid preparations from Beta vulgaris plants grown in hydroponics. Two different 2-D electrophoresis approaches have been used to study these proteomes: isoelectrical focusing followed by SDS PAGE (IEF-SDS PAGE) and blue-native polyacrylamide gel electrophoresis followed by SDS PAGE (BN-SDS PAGE). These techniques resolved approximately 110–140 and 40 polypeptides, respectively. Iron deficiency induced significant changes in the thylakoid sugar beet proteome profiles: the relative amounts of electron transfer protein complexes were reduced, whereas those of proteins participating in leaf carbon fixation-linked reactions were increased. A set of polypeptides, which includes several enzymes related to metabolism, was detected in thylakoid preparations from Fe-deficient Beta vulgaris leaves by using BN-SDS PAGE, suggesting that they may be associated with these thylakoids in vivo. The BN-SDS PAGE technique has been proven to be a better method than IEF-SDS PAGE to resolve highly hydrophobic integral membrane proteins from thylakoid preparations, allowing for the identification of complexes and determination of their polypeptidic components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

IEF-SDS PAGE:

Isoelectrical focusing polyacrylamide gel electrophoresis

BN-SDS PAGE:

Blue-native polyacrylamide gel electrophoresis

LC-MS:

Liquid chromatography mass spectrometry

References

  • Anderson LE, Gibbons JT, Wang X (1996) Distribution of ten enzymes of carbon metabolism in pea (Pisum sativum) chloroplasts. Int J Plant Sci 157:525–538

    Article  CAS  Google Scholar 

  • Arnon DI, Whatley FR (1949) Is chloride a coenzyme of photosynthesis? Science 110:554–556

    Article  PubMed  CAS  Google Scholar 

  • Arulanantham AR, Rao IM, Terry N (1990) Limiting factors in photosynthesis. VI. Regeneration of ribulose 1,5-bisphosphate limits photosynthesis at low photochemical capacity. Plant Physiol 93:1466–1475

    PubMed  CAS  Google Scholar 

  • Belkhodja R, Morales F, Quílez R, López-Millán AF, Abadía A, Abadía J (1998) Iron deficiency causes changes in chlorophyll fluorescence due to the reduction in the dark of the Photosystem II acceptor side. Photosynth Res 56:265–276

    Article  CAS  Google Scholar 

  • Berthold DA, Babcock GT, Yocum CF (1981) Highly resolved oxygen-evolving photosystem II preparation from spinach thylakoid membranes. FEBS Lett 134:231–234

    Article  CAS  Google Scholar 

  • Bibby TS, Nield J, Barber J (2001) Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature 412:743–745

    Article  PubMed  CAS  Google Scholar 

  • Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant-proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99

    Article  CAS  Google Scholar 

  • Boekema EJ, Hifney A, Yakushevska AE, Piotrowski M, Keegstra W, Berry S, Michel KP, Pistorius EK, Kruip J (2001) A giant chlorophyll–protein complex induced by iron deficiency in cyanobacteria. Nature 412:745–748

    Article  PubMed  CAS  Google Scholar 

  • Burnap RL, Troyan T, Sherman LA (1993) The highly abundant chlorophyll–protein complex of iron-deficient Synechococcus sp. PCC7942 (CP43′) is encoded by the isiA gene. Plant Physiol 103:893–902

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Barak P (1982) Iron nutrition of plants in calcareous soils. Adv Agron 35:217–240

    CAS  Google Scholar 

  • Ciambella C, Roepstorff P, Aro EM, Zolla L (2005) A proteomic approach for investigation of photosynthetic apparatus in plants. Proteomics 5:746–757

    Article  PubMed  CAS  Google Scholar 

  • De Las Rivas J, Lozano JJ, Ortiz AR (2002) Comparative analysis of chloroplast genomes: functional annotation, genome-based phylogeny, and deduced evolutionary patterns. Genome Res 12:567–583

    Article  PubMed  CAS  Google Scholar 

  • Dunahay TG, Staehelin LA, Seibert M, Ogilvie PD, Berg SP (1984) Structural, biochemical and biophysical characterization of 4 oxygen-evolving photosystem-II preparations from spinach. Biochim Biophys Acta 764:179–193

    Article  CAS  Google Scholar 

  • Friso G, Giacomelli L, Ytterberg AJ, Peltier JB, Rudella A, Sun Q, Wijk KJ (2004) In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. Plant Cell 16:478–499

    Article  PubMed  CAS  Google Scholar 

  • Gómez SM, Nishio JN, Faull KF, Whitelegge JP (2002) The chloroplast grana proteome defined by intact mass measurements from liquid chromatography mass spectrometry. Mol Cell Proteomics 1:46–59

    Article  PubMed  CAS  Google Scholar 

  • Gontero B, Cárdenas ML, Ricard J (1988) A functional 5-enzyme complex of chloroplast involved in the Calvin cycle. Eur J Biochem 173:437–443

    Article  PubMed  CAS  Google Scholar 

  • Guikema JA, Sherman LA (1983) Chlorophyll–protein organization of membranes from the cyanobacterium Anacystis nidulans. Arch Biochem Biophys 220:155–166

    Article  PubMed  CAS  Google Scholar 

  • Heinemeyer J, Eubel H, Wehmhoner D, Jansch L, Braun HP (2004) Proteomic approach to characterize the supramolecular organization of photosystems in higher plants. Phytochemistry 65:1683–1692

    Article  PubMed  CAS  Google Scholar 

  • Herranen M, Battchikova N, Zhang P, Graf A, Sirpio S, Paakkarinen V, Aro EM (2004) Towards functional proteomics of membrane protein complexes in Synechocystis sp. PCC 6803. Plant Physiol 134:470–481

    Article  PubMed  CAS  Google Scholar 

  • Hippler M, Klein J, Fink A, Allinger T, Hoerth P (2001) Towards functional proteomics of membrane protein complexes: analysis of thylakoid membranes from Chlamydomonas reinhardtii. Plant J 28:595–606

    Article  PubMed  CAS  Google Scholar 

  • Jebanathirajah JA, Coleman JR (1998) Association of carbonic anhydrase with a Calvin cycle enzyme complex in Nicotiana tabacum. Planta 204:177–182

    Article  PubMed  CAS  Google Scholar 

  • Kieselbach T, Bystedt M, Hynds P, Robinson C, Schroder WP (2000) A peroxidase homologue and novel plastocyanin located by proteomics to the Arabidopsis chloroplast thylakoid lumen. FEBS Lett 480:271–276

    Article  PubMed  CAS  Google Scholar 

  • Kügler M, Jänsch L, Kruft V, Schmitz UK, Braun HP (1997) Analysis of the chloroplast protein complexes by blue-native polyacrylamide gel electrophoresis (BN-PAGE). Photosynth Res 53:35–44

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lindsay WL, Schwab AP (1982) The chemistry of iron soils and its availability to plants. J Plant Nutr 5:821–840

    CAS  Google Scholar 

  • Molloy MP (2000) Two-dimensional electrophoresis of membrane proteins using immobilized pH gradients. Anal Biochem 280:1–10

    Article  PubMed  CAS  Google Scholar 

  • Morales F, Abadía A, Abadía J (1990) Characterization of the xanthophyll cycle and other photosynthetic pigment changes induced by iron deficiency in sugar beet (Beta vulgaris L.). Plant Physiol 94:607–613

    PubMed  CAS  Google Scholar 

  • Morales F, Abadía A, Belkhodka R, Abadía J (1994) Iron deficiency-induced changes in the photosynthetic pigment composition of field-grown Pyrus communis L. leaves. Plant Cell Environ 17:1153–1160

    Article  CAS  Google Scholar 

  • Moseley JL, Allinger T, Herzog S, Hoerth P, Wehinger E, Merchant S, Hippler M (2002) Adaptation to Fe-deficiency requires remodeling of the photosynthetic apparatus. Embo J 21:6709–6720

    Article  PubMed  CAS  Google Scholar 

  • Naumann B, Stauber EJ, Busch A, Sommer F, Hippler M (2005) N-terminal processing of Lhca3 is a key step in remodeling of the photosystem I-light-harvesting complex under iron deficiency in Chlamydomonas reinhardtii. J Biol Chem 280:20431–20441

    Article  PubMed  CAS  Google Scholar 

  • Nishio JN, Abadía J, Terry N (1985) Chlorophyll–proteins and electron transport during iron nutrition-mediated chloroplast development. Plant Physiol 78:296–299

    PubMed  CAS  Google Scholar 

  • Pakrasi HB, Riethman HC, Sherman LA (1985) Organization of pigment proteins in the photosystem II complex of the cyanobacterium Anacystis nidulans R2. Proc Natl Acad Sci USA 82:6903–6907

    Article  PubMed  CAS  Google Scholar 

  • Peltier JB, Friso G, Kalume DE, Roepstorff P, Nilsson F, Adamska I, van Wijk KJ (2000) Proteomics of the chloroplast: systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. Plant Cell 12:319–341

    Article  PubMed  CAS  Google Scholar 

  • Peltier JB, Emanuelsson O, Kalume DE, Ytterberg J, Friso G, Rudella A, Liberles DA, Soderberg L, Roepstorff P, von Heijne G, van Wijk KJ (2002) Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction. Plant Cell 14:211–236

    Article  PubMed  CAS  Google Scholar 

  • Peltier JB, Ytterberg AJ, Sun Q, van Wijk KJ (2004) New functions of the thylakoid membrane proteome of Arabidopsis thaliana revealed by a simple, fast, and versatile fractionation strategy. J Biol Chem 279:49367–49383

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Bueno ML, Rahoutei J, Sajnani C, García-Luque I, Baron M (2004) Proteomic analysis of the oxygen-evolving complex of photosystem II under biotic stress: studies on Nicotiana benthamiana infected with tobamoviruses. Proteomics 4:418–425

    Article  PubMed  CAS  Google Scholar 

  • Platt-Aloia KA, Thomson WW, Terry N (1983) Changes in plastid ultrastructure during iron nutrition-mediated chloroplast development. Plant Physiol 78:269–299

    Google Scholar 

  • Rexroth S, Meyer zu Tittingdorf JM, Krause F, Dencher NA, Seelert H (2003) Thylakoid membrane at altered metabolic state: challenging the forgotten realms of the proteome. Electrophoresis 24:2814–2823

    Article  PubMed  CAS  Google Scholar 

  • Riethman HC, Sherman LA (1988) Purification and characterization of an iron stress-induced chlorophyll–protein from the cyanobacterium Anacystis nidulans R2. Biochim Biophys Acta 935:141–151

    Article  PubMed  CAS  Google Scholar 

  • Rombolà AD, Gogorcena Y, Larbi A, Morales F, Baldi E, Marangoni B, Tagliavini M, Abadía J (2005) Iron deficiency induced changes in carbon fixation and leaf elemental composition of sugar beet (Beta vulgaris) plants. Plant Soil 271:39–45

    Article  CAS  Google Scholar 

  • Santoni V, Molloy M, Rabilloud T (2000) Membrane proteins and proteomics: un amour impossible? Electrophoresis 21:1054–1070

    Article  PubMed  CAS  Google Scholar 

  • Schägger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231

    Article  PubMed  Google Scholar 

  • Schägger H, Cramer WA, von Jagow G (1994) Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal Biochem 217:220–230

    Article  PubMed  Google Scholar 

  • Schevchenko VA, Akayeva EA, Yeliseyeva IM, Yelisova TV, Yofa EL, Nilova IN, Syomov AB, Burkart W (1996) Human cytogenetic consequences of the Chernobyl accident. Mutat Res 361:29–34

    PubMed  CAS  Google Scholar 

  • Spiller S, Terry N (1980) Limiting factors in photosynthesis. II. Iron stress diminishes photochemical capacity by reducing the number of photosynthetic units. Plant Physiol 65:121–125

    PubMed  CAS  Google Scholar 

  • Suckau D, Resemann A, Schuerenberg M, Hufnagel P, Franzen J, Holle A (2003) A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. Anal Bioanal Chem 376:952–965

    Article  PubMed  CAS  Google Scholar 

  • Suorsa M, Regel RE, Paakkarinen V, Battchikova N, Herrmann RG, Aro EM (2004) Protein assembly of photosystem II and accumulation of subcomplexes in the absence of low molecular mass subunits PsbL and PsbJ. Eur J Biochem 271:96–107

    Article  PubMed  CAS  Google Scholar 

  • Susín S, Abián J, Peleato ML, Sánchez-Baeza J, Abadía A, Gelpí E, Abadía J (1994) Flavin excretion from iron deficient sugar beet (Beta vulgaris L.). Planta 193:514–519

    Article  Google Scholar 

  • Süss KH, Arkona C, Manteuffel R, Adler K (1993) Calvin cycle multienzyme complexes are bound to chloroplast thylakoid membranes of higher plants in situ. Proc Natl Acad Sci USA 90:5514–5518

    Article  PubMed  Google Scholar 

  • Süss KH, Prokhorenko I, Adler K (1995) In situ association of Calvin cycle enzymes, Ribulose-1,5-bisphosphate carboxylase/oxygenase activase, ferredoxin-NADP+ reductase, and nitrite reductase with thylakoid and pyrenoid membranes of Chlamydomonas reinhardtii chloroplasts as revealed by immunoelectron microscopy. Plant Physiol 107:1387–1397

    PubMed  Google Scholar 

  • Taylor SE, Terry N, Huston RP (1982) Limiting factors in photosynthesis. III. Effects of iron nutrition on the activities of three regulatory enzymes of photosynthetic carbon metabolism. Plant Physiol 70:1541–1543

    PubMed  CAS  Google Scholar 

  • Terry N (1979) The use of mineral nutrient stress in the study of limiting factors in photosynthesis. In: Marcelle R, Clijsters H, Van Poucke M (eds) Photosynthesis and plant development. Dr W Junk Publishers, The Hague, pp 151–160

    Google Scholar 

  • Terry N (1980) Limiting factors in photosynthesis. I. Use of iron stress to control photochemical capacity in vivo. Plant Physiol 65:114–120

    PubMed  CAS  Google Scholar 

  • Terry N, Abadía J (1986) Function of iron in chloroplast. J Plant Nutr 9:609–646

    CAS  Google Scholar 

  • Thidholm E, Lindstrom V, Tissier C, Robinson C, Schroder WP, Funk C (2002) Novel approach reveals localisation and assembly pathway of the PsbS and PsbW proteins into the photosystem II dimer. FEBS Lett 513:217–222

    Article  PubMed  CAS  Google Scholar 

  • van Wijk KJ (2004) Plastid proteomics. Plant Physiol Biochem 42:963–977

    Article  PubMed  CAS  Google Scholar 

  • Whitelegge JP, Gomez SM, Faull KF (2003) Proteomics of membrane proteins. Adv Protein Chem 65:271–307

    Article  PubMed  CAS  Google Scholar 

  • Winder TL, Nishio JN (1995) Early iron deficiency stress response in leaves of sugar beet. Plant Physiol 108:1487–1494

    Article  PubMed  CAS  Google Scholar 

  • Zolla L, Timperio AM, Walcher W, Huber CG (2003) Proteomics of light-harvesting proteins in different plant species. Analysis and comparison by liquid chromatography-electrospray ionization mass spectrometry. Photosystem II. Plant Physiol 131:198–214

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Spanish Ministry of Science and Education (MEC) projects BOS2001-2343, AGL2003-1999 and AGL2004-0194 (co-financed with FEDER). SA was supported by a predoctoral fellowship from the MEC. AF L-M was scientist on a “Ramón y Cajal” contract from the Spanish Ministry of Education and Culture. We thank Aurora Poc (Estación Experimental de Aula Dei) for excellent technical assistance in growing the plants, and Virpi Paakkarinen and Sari Sirpiö (University of Turku) for their precious help in BN techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anunciación Abadía.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andaluz, S., López-Millán, AF., De las Rivas, J. et al. Proteomic profiles of thylakoid membranes and changes in response to iron deficiency. Photosynth Res 89, 141–155 (2006). https://doi.org/10.1007/s11120-006-9092-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-006-9092-6

Keywords

Navigation