Skip to main content
Log in

Blood pressure regulation II: what happens when one system must serve two masters—oxygen delivery and pressure regulation?

  • Invited Review
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

During high-intensity dynamic exercise, O2 delivery to active skeletal muscles is enhanced through marked increases in both cardiac output and skeletal muscle blood flow. When the musculature is vigorously engaged in exercise, the human heart lacks the pumping capacity to meet the blood flow demands of both the skeletal muscles and other organs such as the brain. Vasoconstriction must therefore be induced through activation of sympathetic nervous activity to maintain blood flow to the brain and to produce the added driving pressure needed to increase flow to the skeletal muscles. In this review, we first briefly summarize the local vascular and neural control mechanisms operating during high-intensity exercise. This is followed by a review of the major neural mechanisms regulating blood pressure during high-intensity exercise, focusing mainly on the integrated activities of the arterial baroreflex and muscle metaboreflex. In high cardiac output situations, such as during high-intensity dynamic exercise, small changes in total peripheral resistance can induce large changes in blood pressure, which means that rapid and fine regulation is necessary to avoid unacceptable drops in blood pressure. To accomplish this rapid regulation, arterial baroreflex function may be modulated in various ways through activation of the muscle metaboreflex and/or other neural mechanisms. Moreover, this modulation of the arterial baroreflex may change over the time course of an exercise bout, or to accommodate changes in exercise intensity. Within this model, integration of arterial baroreflex modulation with other neural mechanisms plays an important role in cardiovascular control during high-intensity exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adreani CM, Kaufman MP (1998) Effect of arterial occlusion on responses of group III and IV afferents to dynamic exercise. J Appl Physiol 84:1827–1833

    CAS  PubMed  Google Scholar 

  • Alam M, Smirk FH (1937) Observations in man upon a blood pressure raising reflex arising from the voluntary muscles. J Physiol 89:372–383

    CAS  PubMed  Google Scholar 

  • Alam M, Smirk FH (1938a) Observations in man on a pulse-accelerating reflex from the voluntary muscles of the legs. J Physiol 92:167–177

    CAS  PubMed  Google Scholar 

  • Alam M, Smirk FH (1938b) Unilateral loss of a blood pressure raising, pulse accelerating, reflex from voluntary muscle due to a lesion of the spinal cord. Clin Sci (Lond) 3:247–252

    Google Scholar 

  • Amann M, Runnels S, Morgan DE, Trinity JD, Fjeldstad AS, Wray DW, Reese VR, Richardson RS (2011) On the contribution of group III and IV muscle afferents to the circulatory response to rhythmic exercise in humans. J Physiol 589:3855–3866

    CAS  PubMed  Google Scholar 

  • Andersen P, Saltin B (1985) Maximal perfusion of skeletal muscle in man. J Physiol 366:233–249

    CAS  PubMed  Google Scholar 

  • Augustyniak RA, Collins HL, Ansorge EJ, Rossi NF, O’Leary DS (2001) Severe exercise alters the strength and mechanisms of the muscle metaboreflex. Am J Physiol Heart Circ Physiol 280:H1645–H1652

    CAS  PubMed  Google Scholar 

  • Bergmann C (1847) Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien 3(1):595–708

    Google Scholar 

  • Bevegård S, Castenfors J, Lindblad E, Tranesjö J (1977) Blood pressure and heart rate regulation capacity of the carotid sinus during changes in blood volume distribution in man. Acta Physiol Scand 99:300–312

    PubMed  Google Scholar 

  • Calbet JA, Joyner MJ (2010) Disparity in regional and systemic circulatory capacities: do they affect the regulation of the circulation? Acta Physiol 199:393–406

    CAS  Google Scholar 

  • Calbet JA, Jensen-Urstad M, Van Hall G, Holmberg HC, Rosdahl H, Saltin B (2004) Maximal muscular vascular conductances during whole body upright exercise in humans. J Physiol 558:319–331

    CAS  PubMed  Google Scholar 

  • Charkoudian N, Martin EA, Dinenno FA, Eisenach JH, Dietz NM, Joyner MJ (2004) Influence of increased central venous pressure on baroreflex control of sympathetic activity in humans. Am J Physiol Heart Circ Physiol 287:H1658–H1662

    CAS  PubMed  Google Scholar 

  • Clifford PS (2011) Local control of blood flow. Adv Physiol Educ 35:5–15

    PubMed  Google Scholar 

  • Coutsos M, Sala-Mercado JA, Ichinose M, Li Z, Dawe EJ, O’Leary DS (2010) Muscle metaboreflex-induced coronary vasoconstriction functionally limits increases in ventricular contractility. J Appl Physiol 109:271–278

    PubMed  Google Scholar 

  • Coutsos M, Sala-Mercado JA, Ichinose M, Li Z, Dawe EJ, O’Leary DS (2013) Muscle metaboreflex-induced coronary vasoconstriction limits ventricular contractility during dynamic exercise in heart failure. Am J Physiol Heart Circ Physiol. (Epub ahead of print)

  • Cui J, Wilson TE, Shibasaki M, Hodges NA, Crandall CG (2001) Baroreflex modulation of muscle sympathetic nerve activity during posthandgrip muscle ischemia in humans. J Appl Physiol 91:1679–1686

    CAS  PubMed  Google Scholar 

  • Daley JC III, Khan MH, Hogeman CS, Sinoway LI (2003) Autonomic and vascular responses to reduced limb perfusion. J Appl Physiol 95:1493–1498

    PubMed  Google Scholar 

  • Delius W, Hagbarth KE, Hongell A, Wallin BG (1972) General characteristics of sympathetic activity in human muscle nerves. Acta Physiol Scand 84:65–81

    CAS  PubMed  Google Scholar 

  • Dempsey JA (2012) New perspectives concerning feedback influences on cardiorespiratory control during rhythmic exercise and on exercise performance. J Physiol 590(17):4129–4144

    CAS  PubMed  Google Scholar 

  • Dyke CK, Proctor DN, Dietz NM, Joyner MJ (1995) Role of nitric oxide in exercise hyperemia during prolonged rhythmic handgripping in humans. J Physiol 488:259–265

    CAS  PubMed  Google Scholar 

  • Ebert TJ (1983) Carotid baroreceptor reflex regulation of forearm vascular resistance in man. J Physiol 337:655–664

    CAS  PubMed  Google Scholar 

  • Eckberg DL, Sleight P (1992) Human baroreflexes in health and disease. Clarendon, Oxford, pp 19–57

    Google Scholar 

  • Ellsworth ML, Sprague RS (2012) Regulation of blood flow distribution in skeletal muscle: role of erythrocyte-released ATP. J Physiol 590:4985–4991

    CAS  PubMed  Google Scholar 

  • Ellsworth ML, Forrester T, Ellis CG, Dietrich HH (1995) The erythrocyte as a regulator of vascular tone. Am J Physiol Heart Circ Physiol 269:H2155–H2161

    CAS  Google Scholar 

  • Ellsworth ML, Ellis CG, Goldman D, Stephenson AH, Dietrich HH, Sprague RS (2009) Erythrocytes: oxygen sensors and modulators of vascular tone. Physiology 24:107–116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fadel PJ, Raven PB (2011) Human investigations into the arterial and cardiopulmonary baroreflexes during exercise. Exp Physiol 97(1):39–50

    PubMed Central  PubMed  Google Scholar 

  • Fadel PJ, Ogoh S, Watenpaugh DE, Wasmund W, Olivencia-Yurvati A, Smith ML, Raven PB (2001) Carotid baroreflex regulation of sympathetic nerve activity during dynamic exercise in humans. Am J Physiol Heart Circ Physiol 280:H1383–H1390

    CAS  PubMed  Google Scholar 

  • Fadel PJ, Ogoh S, Keller DM, Raven PB (2003) Recent insights into carotid baroreflex function in humans using the variable pressure neck chamber. Exp Physiol 88(6):671–680

    PubMed  Google Scholar 

  • Fagius J, Wallin BG, Sundlof G, Nerhed L, Englesson S (1985) Sympathetic outflow in man after anaesthesia of the glossopharyngeal and vagus nerves. Brain 108:423–438

    PubMed  Google Scholar 

  • Fisher JP, Ogoh S, Young CN, Keller DM, Fadel PJ (2007) Exercise intensity influences cardiac baroreflex function at the onset of isometric exercise in humans. J Appl Physiol 103:941–947

    PubMed  Google Scholar 

  • Fisher JP, Seifert T, Hartwich D, Young CN, Secher NH, Fadel PJ (2010) Autonomic control of heart rate by metabolically sensitive skeletal muscle afferents in humans. J Physiol 588:1117–1127

    CAS  PubMed  Google Scholar 

  • Gallagher KM, Fadel PJ, Strømstand M, Ide K, Smith SA, Querry RG, Raven PB, Secher NH (2001) Effects of partial neuromuscular blockade on carotid baroreflex function during exercise in humans. J Physiol 533:861–870

    CAS  PubMed  Google Scholar 

  • Gilligan DM, Panza JA, Kilcoyne CM, Waclawiw MA, Casino PR, Quyyumi AA (1994) Contribution of endothelium-derived nitric oxide to exercise-induced vasodilation. Circulation 90:2853–2858

    CAS  PubMed  Google Scholar 

  • González-Alonso J (2012) ATP as a mediator of erythrocyte-dependent regulation of skeletal muscle blood flow and oxygen delivery in humans. J Physiol 590(20):5001–5013

    PubMed  Google Scholar 

  • González-Alonso J, Olsen B, Saltin B (2002) Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery: role of circulating ATP. Circ Res 91:1046–1055

    PubMed  Google Scholar 

  • Goodwin GM, McCloskey DI, Mitchell JH (1972) Cardiovascular and respiratory responses to changes in central command during isometric exercise at constant muscle tension. J Physiol 226:173–190

    CAS  PubMed  Google Scholar 

  • Hammond RL, Augustyniak RA, Rossi NF, Churchill PC, Lapanowski K, O’Leary DS (2000) Heart failure alters the strength and mechanisms of the muscle metaboreflex. Am J Physiol Heart Circ Physiol 278:H818–H828

    CAS  PubMed  Google Scholar 

  • Hickner RC, Fisher JS, Ehsani AA, Kohrt WM (1997) Role of nitric oxide in skeletal muscle blood flow at rest and during dynamic exercise in humans. Am J Physiol 273:H405–H410

    CAS  PubMed  Google Scholar 

  • Hirai T, Visneski MD, Kearns KJ, Zelis R, Musch TI (1994) Effects of NO synthase inhibition on the muscular blood flow response to treadmill exercise in rats. J Appl Physiol 77:1288–1293

    CAS  PubMed  Google Scholar 

  • Ichinose M, Nishiyasu T (2005) Muscle metaboreflex modulates the arterial baroreflex dynamic effects on peripheral vascular conductance in humans. Am J Physiol Heart Circ Physiol 288:H1532–H1538

    CAS  PubMed  Google Scholar 

  • Ichinose M, Nishiyasu T (2012) Arterial baroreflex control of muscle sympathetic nerve activity under orthostatic stress in humans. Front Physiol 3:314. doi:10.3389/fphys.2012.00314.Epub2012Aug7

    PubMed Central  PubMed  Google Scholar 

  • Ichinose M, Saito M, Wada H, Kitano A, Kondo N, Nishiyasu T (2002) Modulation of arterial baroreflex dynamic response during muscle metaboreflex activation in humans. J Physiol 544:939–948

    CAS  PubMed  Google Scholar 

  • Ichinose M, Saito M, Kitano A, Hayashi K, Kondo N, Nishiyasu T (2004a) Modulation of arterial baroreflex dynamic response during mild orthostatic stress in humans. J Physiol 557:321–330

    CAS  PubMed  Google Scholar 

  • Ichinose M, Saito M, Ogawa T, Hayashi K, Kondo N, Nishiyasu T (2004b) Modulation of control of muscle sympathetic nerve activity during orthostatic stress in humans. Am J Physiol 287:H2147–H2153

    CAS  Google Scholar 

  • Ichinose M, Saito M, Wada H, Kitano A, Kondo N, Nishiyasu T (2004c) Modulation of arterial baroreflex control of muscle sympathetic nerve activity by muscle metaboreflex in humans. Am J Physiol Heart Circ Physiol 286:H701–H707

    CAS  PubMed  Google Scholar 

  • Ichinose M, Saito M, Fujii N, Kondo N, Nishiyasu T (2006a) Modulation of the control of muscle sympathetic nerve activity during severe orthostatic stress. J Physiol 576:947–958

    CAS  PubMed  Google Scholar 

  • Ichinose M, Saito M, Kondo N, Nishiyasu T (2006b) Time-dependent modulation of arterial baroreflex control of muscle sympathetic nerve activity during isometric exercise in humans. Am J Physiol Heart Circ Physiol 290:1419–1426

    Google Scholar 

  • Ichinose M, Koga S, Fujii N, Kondo N, Nishiyasu T (2007) Modulation of the spontaneous beat-to-beat fluctuations in peripheral vascular resistance during activation of muscle metaboreflex. Am J Physiol Heart Circ Physiol 293:H416–H424

    CAS  PubMed  Google Scholar 

  • Ichinose M, Saito M, Fujii N, Ogawa T, Hayashi K, Kondo N, Nishiyasu T (2008) Modulation of the control of muscle sympathetic nerve activity during incremental leg cycling. J Physiol 586:2753–2766

    CAS  PubMed  Google Scholar 

  • Ichinose M, Sala-Mercado JA, Coutsos M, Li Z, Ichinose TK, Dawe E, O’Leary DS (2010) Modulation of cardiac output alters the mechanisms of the muscle metaboreflex pressor response. Am J Physiol Heart Circ Physio 298:H245–H250

    CAS  Google Scholar 

  • Ichinose M, Delliaux S, Watanabe K, Fujii N, Nishiyasu T (2011) Evaluation of muscle metaboreflex function through graded reduction in forearm blood flow during rhythmic handgrip exercise in humans. Am J Physiol Heart Circ Physiol 301:H609–H616

    CAS  PubMed  Google Scholar 

  • Ichinose M, Sala-Mercado JA, Coutsos M, Li Z, Ichinose TK, Dawe E, Fano D, O’Leary DS (2012) Dynamic cardiac output regulation at rest, during exercise, and muscle metaboreflex activation: impact of congestive heart failure. Am J Physiol Regul Integr Comp Physiol 303:R757–R768

    CAS  PubMed  Google Scholar 

  • Iellamo F, Legramante JM, Raimondi G, Peruzzi G (1997) Baroreflex control of sinus node during dynamic exercise in humans: effects of central command and muscle reflexes. Am J Physiol Heart Circ Physiol 272:1157–1164

    Google Scholar 

  • Ishii K, Liang N, Oue A, Hirasawa A, Sato K, Sadamoto T, Matsukawa K (2012) Central command contributes to increased blood flow in the noncontracting muscle at the start of one-legged dynamic exercise in humans. J Appl Physiol 112(12):1961–1974

    CAS  PubMed  Google Scholar 

  • Joyner MJ (1991) Does the pressor response to ischemic exercise improve blood flow to contracting muscles in humans? J Appl Physiol 71:1496–1501

    CAS  PubMed  Google Scholar 

  • Joyner MJ (1992) Muscle chemoreflexes and exercise in humans. Clin Auton Res 2:201–208

    CAS  PubMed  Google Scholar 

  • Joyner MJ, Wilkins BW (2007) Exercise hyperaemia: is anything obligatory but the hyperaemia? J Physiol 583(3):855–860

    CAS  PubMed  Google Scholar 

  • Kamiya A, Michikami D, Qi Fu, Niimi Y, Iwase S, Mano T, Suzumura A (2001) Static handgrip exercise modifies arterial baroreflex control of vascular sympathetic outflow in humans. Am J Physiol Regul Integr Comp Physiol 281:R1134–R1139

    CAS  PubMed  Google Scholar 

  • Keller DM, Fadel PJ, Ogoh S, Brothers RM, Hawkins M, Olivencia-Yurvati A, Raven PB (2004) Carotid baroreflex control of leg vasculature in exercising and non-exercising skeletal muscle in humans. J Physiol 561:283–293

    CAS  PubMed  Google Scholar 

  • Kienbaum P, Karlsson T, Sverrisdottir YB, Elam M, Wallin BG (2001) Two sites for modulation of human sympathetic activity by arterial baroreceptors? J Physiol 531:861–869

    CAS  PubMed  Google Scholar 

  • Kim JK, Sala-Mercado JA, Rodriguez J, Scislo TJ, O’Leary DS (2005) Arterial baroreflex alters strength and mechanisms of muscle metaboreflex during dynamic exercise. Am J Physiol Heart Circ Physiol 288:H1374–H1380

    CAS  PubMed  Google Scholar 

  • Komine H, Matsukawa K, Tsuchimochi H, Murata J (2003) Central command blunts the baroreflex bradycardia to aortic nerve stimulation at the onset of voluntary static exercise in cats. Am J Physiol Heart Circ Physiol 285:H516–H526

    CAS  PubMed  Google Scholar 

  • Krogh A, Lindhard J (1913) The regulation of respiration and circulation during the initial stages of muscular work. J Physiol 47:112–136

    CAS  PubMed  Google Scholar 

  • Krogh A, Lindhard J (1917) A comparison between voluntary and electrically induced muscular work in man. J Physiol 51:182–201

    CAS  PubMed  Google Scholar 

  • Laughlin MH (1987) Skeletal muscle blood flow capacity: role of muscle pump in exercise hyperemia. Am J Physiol Heart Circ Physiol 253:H993–H1004

    CAS  Google Scholar 

  • Laughlin MH, Korthuis RJ, Duncker DJ, Brade RJ (1996) Control of blood flow to cardiac and skeletal muscle during exercise. Handbook of physiology. In: Rowell LB, Shepherd JT (eds). Exercise: regulation and integration of multiple systems (Sect. 12, chap 16). American Physiology Society, Bethesda, pp 705–769

  • Macefield VG, Wallin BG (1999) Firing properties of single vasoconstrictor neurons in human subjects with high levels of muscle sympathetic activity. J Physiol 516:293–301

    CAS  PubMed  Google Scholar 

  • Manica G, Mark L (1983) Arterial baroreflexes in humans. In: Handbook of physiology. The cardiovascular system, peripheral circulation and organ blood flow (Sect. 2, vol 3, Pt 2). American Physiological Society, Bethesda, pp 755–793

  • Matsukawa K (2011) Central command: control of cardiac sympathetic and vagal efferent nerve activity and the arterial baroreflex during spontaneous motor behaviour in animals. Exp Physiol 97(1):20–28

    PubMed  Google Scholar 

  • Matsukawa K, Ishii K, Kadowaki A, Liang N, Ishida T (2012) Differential effect of central command on aortic and carotid sinus baroreceptor-heart rate reflexes at the onset of spontaneous, fictive motor activity. Am J Physiol Heart Circ Physiol 303(4):H464–H474

    CAS  PubMed  Google Scholar 

  • McCloskey DI, Mitchell JH (1972) Reflex cardiovascular and respiratory responses originating in exercising muscle. J Physiol 224:173–186

    CAS  PubMed  Google Scholar 

  • McIlveen SA, Shawn GH, Kaufman MP (2001) Both central command and exercise pressor reflex rest carotid sinus baroreflex. Am J Physiol Heart Circ Physiol 280:1451–1463

    Google Scholar 

  • Miki K, Yoshimoto M, Tanimizu M (2003) Acute shifts of baroreflex control of renal sympathetic nerve activity induced by treadmill exercise in rats. J Physiol 548:313–322

    CAS  PubMed  Google Scholar 

  • Mitchell JH (1990) Neural control of the circulation during exercise. Med Sci Sports Exerc 22:141–154

    CAS  PubMed  Google Scholar 

  • Mitchell J, Kaufman M, Iwamoto G (1983) The exercise pressor reflex: its cardiovascular effects, afferent mechanisms, and central pathways. Annu Rev Physiol 45:229–242

    CAS  PubMed  Google Scholar 

  • Mittelstadt SW, Bell LB, O’Hagan KP, Clifford PS (1994) Muscle chemoreflex alters vascular conductance in nonischemic exercising skeletal muscle. J Appl Physiol 77:2761–2766

    CAS  PubMed  Google Scholar 

  • Miyauchi T, Maeda S, Iemitsu M, Kobayashi T, Kumagai Y, Yamaguchi I, Matsuda M (2003) Exercise causes a tissue-specific change of NO production in the kidney and lung. J Appl Physiol 94:60–68

    CAS  PubMed  Google Scholar 

  • Mortensen SP, González-Alonso J, Bune LT, Saltin B, Pilegaard H, Hellsten Y (2009) ATP-induced vasodilation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins, and adenosine. Am J Physiol Regul Integr Comp Physiol 296:R1140–R1148

    CAS  PubMed  Google Scholar 

  • Murphy MN, Mizuno M, Mitchell JH, Smith SA (2011) Cardiovascular regulation by skeletal muscle reflexes in health and disease. Am J Physiol Heart Circ Physiol 301:H1191–H1204

    CAS  PubMed  Google Scholar 

  • Nishiyasu T, Tan N, Morimoto K, Nishiyasu M, Yamaguchi Y, Murakami N (1994a) Enhancement of parasympathetic cardiac activity during activation of muscle metaboreflex in humans. J Appl Physiol 77:2778–2783

    CAS  PubMed  Google Scholar 

  • Nishiyasu T, Ueno H, Nishiyasu M, Tan N, Morimoto K, Morimoto A, Deguchi T, Murakami N (1994b) Relationship between mean arterial pressure and muscle cell pH during forearm ischemia after sustained handgrip. Acta Physiol Scand 151:143–148

    CAS  PubMed  Google Scholar 

  • Node K, Kitakaze M, Sato H, Koretsune Y, Katsube Y, Karita M, Kosaka H, Hori M (1997) Effect of acute dynamic exercise on circulating plasma nitric oxide level and correlation to norepinephrine release in normal subjects. Am J Cardiol 79:526–528

    CAS  PubMed  Google Scholar 

  • Ogoh S, Fadel PJ, Wasmund WL, Raven PB (2002a) Haemodynamic changes during neck pressure and suction in seated and supine positions. J Physiol 540:707–716

    CAS  PubMed  Google Scholar 

  • Ogoh S, Wasmund WL, Keller DM, Yurvati AO, Gallagher KM, Mitchell JH, Raven PB (2002b) Role of central command in carotid baroreflex resetting in humans during static exercise. J Physiol 543:349–364

    CAS  PubMed  Google Scholar 

  • Ogoh S, Fisher JP, Raven PB, Fadel PJ (2007) Arterial baroreflex control of muscle sympathetic nerve activity in the transition from rest to steady-state dynamic exercise in humans. Am J Physiol Heart Circ Physiol 293:H2202–H2209

    CAS  PubMed  Google Scholar 

  • Ogoh S, Fisher JP, Young CN, Raven PB, Fadel PJ (2009) Transfer function characteristics of the neural and peripheral arterial baroreflex arcs at rest and during postexercise muscle ischemia in humans. Am J Physiol Heart Circ Physiol 296:H1416–H1424

    CAS  PubMed  Google Scholar 

  • O’Leary DS (1993) Autonomic mechanisms of muscle metaboreflex control of heart rate. J Appl Physiol 74:1748–1754

    PubMed  Google Scholar 

  • O’Leary DS, Sheriff DD (1995) Is the muscle metaboreflex important in control of blood flow to ischemic active skeletal muscle? Am J Physiol Heart Circ Physiol 268:H980–H986

    Google Scholar 

  • O’Leary DS, Sala-Mercado JA, Hammond RL, Ansorge EJ, Kim JK, Rodriguez J, Fano D, Ichinose M (2007) Muscle metaboreflex-induced increases in cardiac sympathetic activity vasoconstrict the coronary vasculature. J Appl Physiol 103:190–194

    PubMed  Google Scholar 

  • Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    CAS  PubMed  Google Scholar 

  • Papelier Y, Escourrou P, Helloco F, Rowell LB (1997) Muscle chemoreflex alters carotid sinus baroreflex response in humans. J Appl Physiol 82:577–583

    CAS  PubMed  Google Scholar 

  • Pawelczyk JA, Raven PB (1989) Reductions in central venous pressure improve carotid baroreflex responses in conscious men. Am J Physiol 257:H1389–H1395

    CAS  PubMed  Google Scholar 

  • Potts JT, Mitchell JH (1998) Rapid resetting of carotid baroreflex by afferent input from skeletal muscle receptors. Am J Physiol Heart Circ Physiol 275:H2000–H2008

    CAS  Google Scholar 

  • Potts JT, Shi XR, Raven PB (1993) Carotid baroreflex responsiveness during dynamic exercise in humans. Am J Physiol Heart Circ Physiol 265:H1928–H1938

    CAS  Google Scholar 

  • Pryor SL, Lewis SF, Haller RG, Bertocci LA, Victor RG (1990) Impairment of sympathetic activation during static exercise in patients with muscle phosphorylase deficiency (McArdle’s disease). J Clin Invest 85:1444–1449

    CAS  PubMed Central  PubMed  Google Scholar 

  • Radegran G, Blomstrand E, Saltin B (1999) Peak muscle perfusion and oxygen uptake in humans: importance of precise estimates of muscle mass. J Appl Physiol 87:2375–2380

    CAS  PubMed  Google Scholar 

  • Raven PB, Potts JT, Shi X (1997) Baroreflex regulation of blood pressure during dynamic exercise. Exerc Sport Sci Rev 25:365–389

    CAS  PubMed  Google Scholar 

  • Remensnyder JP, Mitchell JH, Sarnoff SJ (1962) Functional sympatholysis during muscular activity. Circ Res 11:370–380

    CAS  PubMed  Google Scholar 

  • Richardson RS, Poole DC, Knight DR, Kurdak SS, Hogan MC, Grassi B, Johnson EC, Kendrick KF, Erickson BK, Wagner PD (1993) High muscle blood flow in man: is maximal O2 extraction compromised? J Appl Physiol 75:1911–1916

    CAS  PubMed  Google Scholar 

  • Rosenmeier JB, Hansen J, González-Alonso J (2004) Circulating ATP-induced vasodilatation overrides sympathetic vasoconstrictor activity in human skeletal muscle. J Physiol 558:351–365

    CAS  PubMed  Google Scholar 

  • Rosenmeier JB, Yegutkin GG, González-Alonso J (2008) Activation of ATP/UTP-selective receptors increases blood flow and blunts sympathetic vasoconstriction in human skeletal muscle. J Physiol 586:4993–5002

    CAS  PubMed  Google Scholar 

  • Rowell LB, O’Leary DS (1990) Reflex control of the circulation during exercise: chemoreflex and mechanoreflexes. J Appl Physiol 69:407–418

    CAS  PubMed  Google Scholar 

  • Rowell LB, O’Leary DS, Kellogg DL (1996) Integration of cardiovascular control systems in dynamic exercise. Handbook of physiology. In: Rowell LB, Shepherd JT (eds). Exercise: regulation and integration of multiple systems (Sect. 12, chap 17). American Physiology Society, Bethesda, pp 770–838

  • Sagawa K (1983) Baroreflex control of systemic arterial pressure and vascular beds. In: Handbook of physiology. The cardiovascular system. peripheral circulation and organ blood flow (Sect. 2, vol 3, Pt 2). American Physiological Society, Bethesda, pp 453–496

  • Saito M, Mano T, Iwase S (1989) Sympathetic nerve activity related to local fatigue sensation during static contraction. J Appl Physiol 67:980–984

    CAS  PubMed  Google Scholar 

  • Saltin B, Radegran G, Koskolou MD, Roach RC (1998) Skeletal muscle blood flow in humans and its regulation during exercise. Acta Physiol Scand 162:421–436

    CAS  PubMed  Google Scholar 

  • Scherrer U, Pryor SL, Bertocci LA, Victor RG (1990) Arterial baroreflex buffering of sympathetic activation during exercise-induced elevations in arterial pressure. J Clin Invest 86:1855–1861

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seals DR, Chase PB, Taylor JA (1988) Autonomic mediation of the pressor responses to isometric exercise in humans. J Appl Physiol 64:2190–2196

    CAS  PubMed  Google Scholar 

  • Secher NH, Clausen JP, Klausen K, Noer I, Trap-Jensen J (1977) Central and regional circulatory effects of adding arm exercise to leg exercise. Acta Physiol Scand 100:288–297

    CAS  PubMed  Google Scholar 

  • Shepherd JT (1983) Circulation to skeletal muscle. In: Shepherd JT, Abboud FM (eds). Handbook of physiology. The cardiovascular system, peripheral circulation and organ blood flow (Sect. 2, vol III). American Physiological Society, Bethesda, pp 319–370

  • Sheriff DD, O’Leary DS, Scher AM, Rowell LB (1990) Baroreflex attenuates pressor response to graded muscle ischemia in exercising dogs. Am J Physiol Heart Circ Physiol 258:H305–H310

    CAS  Google Scholar 

  • Sheriff DD, Augustyniak RA, O’Leary DS (1998) Muscle chemoreflex-induced increases in right atrial pressure. Am J Physiol Heart Circ Physiol 275:H767–H775

    CAS  Google Scholar 

  • Shi X, Potts JT, Foresman BH, Raven PB (1993) Carotid baroreflex responsiveness to lower body positive pressure-induced increase in central venous pressure. Am J Physiol 265:H918–H922

    CAS  PubMed  Google Scholar 

  • Shi X, Foresman BH, Raven PB (1997) Interaction of central venous pressure, intramuscular pressure, and carotid baroreflex function. Am J Physiol 272:H1359–H1363

    CAS  PubMed  Google Scholar 

  • Sprague RS, Ellsworth ML, Stephenson AH, Kleinhenz ME, Lonigro AJ (1998) Deformation-induced ATP release from red blood cells requires cystic fibrosis transmembrane conductance regulator activity. Am J Physiol Heart Circ Physiol 275:H1726–H1732

    CAS  Google Scholar 

  • Sundlof G, Wallin BG (1978) Human muscle nerve sympathetic activity at rest. Relationship to blood pressure and age. J Physiol 274:621–637

    CAS  PubMed  Google Scholar 

  • Tschakovsky ME, Sujirattanawimol K, Ruble SB, Valic Z, Joyner MJ (2002) Is sympathetic neural vasoconstriction blunted in the vascular bed of exercising human muscle? J Physiol 541:623–635

    CAS  PubMed  Google Scholar 

  • Victor RG, Mark AL (1985) Interaction of cardiopulmonary and carotid baroreflex control of vascular resistance in humans. J Clin Invest 76:1592–1598

    CAS  PubMed Central  PubMed  Google Scholar 

  • Victor RG, Bertocci LA, Pryor SL, Nunnally RL (1988) Sympathetic nerve discharge is coupled to muscle cell pH during exercise in humans. J Clin Invest 82:1301–1305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wallin BG, Eckberg DL (1982) Sympathetic transients caused by abrupt alterations of carotid baroreceptor activity in humans. Am J Physiol Heart Circ Physiol 242:185–190

    Google Scholar 

  • Wallin BG, Sundlof G, Delius W (1975) The effect of carotid sinus nerve stimulation on muscle and skin nerve sympathetic activity in man. Pflügers Arch 358:101–110

    CAS  PubMed  Google Scholar 

  • Watanabe K, Ichinose M, Fujii N, Matsumoto M, Nishiyasu T (2010) Individual differences in the heart rate response to activation of the muscle metaboreflex in humans. Am J Physiol Heart Circ Physiol 299:H1708–H1714

    CAS  PubMed  Google Scholar 

  • Wyss CR, Ardell JL, Scher AM, Rowell LB (1983) Cardiovascular responses to graded reductions in hindlimb perfusion in exercising dogs. Am J Physiol Heart Circ Physiol 245:H481–H486

    CAS  Google Scholar 

  • Yang Z, Richard V, Segesser L, Bauer E, Stulz P, Turina M, Lüscher TF (1990) Threshold concentrations of endothelin-1 potentiate contractions to norepinephrine and serotonin in human arteries. A new mechanism of vasospasm? Circulation 82:188–195

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to sincerely thank the many subjects who have participated in our experiments over the years and also our collaborators. This study was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Nishiyasu.

Additional information

Communicated by Nigel A.S. Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ichinose, M., Maeda, S., Kondo, N. et al. Blood pressure regulation II: what happens when one system must serve two masters—oxygen delivery and pressure regulation?. Eur J Appl Physiol 114, 451–465 (2014). https://doi.org/10.1007/s00421-013-2691-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-013-2691-y

Keywords

Navigation