Skip to main content

Effects of Exercise on Blood Pressure and Autonomic Function and Other Hemodynamic Regulatory Factors

  • Chapter
Effects of Exercise on Hypertension

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

The autonomic nervous system is important for maintaining cardiovascular homeostasis in daily living. Improper autonomic function (i.e., the set of neurological control systems regulating and maintaining cardiovascular homeostasis, particularly heat rate and blood pressure) can lead to cardiovascular disease such as hypertension. This chapter discusses the role of the autonomic nervous system in hypertension and the effect of exercise on the autonomic nervous system in restoring cardiovascular health. Within, the reader will find a tutorial of the anatomy and physiology of the autonomic nervous system. Various common techniques for assessing autonomic function are also included in this discussion. The chapter finishes with a review of the literature pertaining to the acute (short-term or immediate) and chronic (i.e., long-term or training) effects of exercise on autonomic function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACh:

Acetylcholine

ANGII:

Angiotensin II

ANS:

Autonomic nervous system

ATP:

Adenosine triphosphate

BP:

Blood pressure

BRS:

Baroreceptor sensitivity

Epi:

Epinephrine

HF:

High frequency

HR:

Heart rate

HRV:

Heart rate variability

LBNP:

Lower body negative pressure

LF:

Low frequency

MAP:

Mean arterial pressure

MSNA:

Muscle sympathetic nerve activity

NE:

Norepinephrine

NO:

Nitric oxide

NP/NS:

Neck pressure/neck suction

OTT:

Orthostatic tolerance test

PSNS:

Parasympathetic nervous system

RAAS:

Renin-angiotensin-aldosterone system

SNA:

Sympathetic nerve activity

SNS:

Sympathetic nervous system

SSNA:

Skin sympathetic nerve activity

References

  1. Esler M. The 2009 Carl Ludwig Lecture: pathophysiology of the human sympathetic nervous system in cardiovascular diseases: the transition from mechanisms to medical management. J Appl Physiol (1985). 2010;108:227–37.

    Article  CAS  Google Scholar 

  2. Esler M, Jennings G, Korner P, et al. Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension. 1988;11:3–20.

    Article  CAS  PubMed  Google Scholar 

  3. Lambert E, Straznicky N, Schlaich M, et al. Differing pattern of sympathoexcitation in normal-weight and obesity-related hypertension. Hypertension. 2007;50:862–8.

    Article  CAS  PubMed  Google Scholar 

  4. Leosco D, Parisi V, Femminella GD, et al. Effects of exercise training on cardiovascular adrenergic system. Front Physiol. 2013;4:348.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fisher JP, Paton JF. The sympathetic nervous system and blood pressure in humans: implications for hypertension. J Hum Hypertens. 2012;26:463–75.

    Article  CAS  PubMed  Google Scholar 

  6. Mueller PJ. Exercise training and sympathetic nervous system activity: evidence for physical activity dependent neural plasticity. Clin Exp Pharmacol Physiol. 2007;34:377–84.

    Article  CAS  PubMed  Google Scholar 

  7. Joyner MJ, Green DJ. Exercise protects the cardiovascular system: effects beyond traditional risk factors. J Physiol. 2009;587:5551–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Robertson D, Biaggioni I. Primer on the autonomic nervous system. Amsterdam: Elsevier/AP; 2012.

    Google Scholar 

  9. Armour JA. Cardiac neuronal hierarchy in health and disease. Am J Physiol Regul Integr Comp Physiol. 2004;287:R262–71.

    Article  CAS  PubMed  Google Scholar 

  10. Dinenno FA, Joyner MJ. Blunted sympathetic vasoconstriction in contracting skeletal muscle of healthy humans: is nitric oxide obligatory? J Physiol. 2003;553:281–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Remensnyder JP, Mitchell JH, Sarnoff SJ. Functional sympatholysis during muscular activity. Observations on influence of carotid sinus on oxygen uptake. Circ Res. 1962;11:370–80.

    Article  CAS  PubMed  Google Scholar 

  12. Buckwalter JB, Taylor JC, Hamann JJ, Clifford PS. Role of nitric oxide in exercise sympatholysis. J Appl Physiol (1985). 2004;97:417–23; discussion 416.

    Article  CAS  Google Scholar 

  13. Saltin B, Mortensen SP. Inefficient functional sympatholysis is an overlooked cause of malperfusion in contracting skeletal muscle. J Physiol. 2012;590:6269–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mortensen SP, Nyberg M, Gliemann L, Thaning P, Saltin B, Hellsten Y. Exercise training modulates functional sympatholysis and alpha-adrenergic vasoconstrictor responsiveness in hypertensive and normotensive individuals. J Physiol. 2014;592:3063–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Singh JP, Larson MG, Tsuji H, Evans JC, O’Donnell CJ, Levy D. Reduced heart rate variability and new-onset hypertension: insights into pathogenesis of hypertension: the Framingham Heart Study. Hypertension. 1998;32:293–7.

    Article  CAS  PubMed  Google Scholar 

  16. Grassi G, Cattaneo BM, Seravalle G, Lanfranchi A, Mancia G. Baroreflex control of sympathetic nerve activity in essential and secondary hypertension. Hypertension. 1998;31:68–72.

    Article  CAS  PubMed  Google Scholar 

  17. Smith PA, Graham LN, Mackintosh AF, Stoker JB, Mary DA. Sympathetic neural mechanisms in white-coat hypertension. J Am Coll Cardiol. 2002;40:126–32.

    Article  PubMed  Google Scholar 

  18. Korner P, Bobik A, Oddie C, Friberg P. Sympathoadrenal system is critical for structural changes in genetic hypertension. Hypertension. 1993;22:243–52.

    Article  CAS  PubMed  Google Scholar 

  19. Simms AE, Paton JF, Pickering AE, Allen AM. Amplified respiratory-sympathetic coupling in the spontaneously hypertensive rat: does it contribute to hypertension? J Physiol. 2009;587:597–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cabassi A, Vinci S, Calzolari M, Bruschi G, Borghetti A. Regional sympathetic activity in pre-hypertensive phase of spontaneously hypertensive rats. Life Sci. 1998;62:1111–8.

    Article  CAS  PubMed  Google Scholar 

  21. Hall JE, Guyton AC. Guyton and Hall textbook of medical physiology. Philadelphia: Saunders/Elsevier; 2011.

    Google Scholar 

  22. Smith ML, Hudson DL, Graitzer HM, Raven PB. Exercise training bradycardia: the role of autonomic balance. Med Sci Sports Exerc. 1989;21:40–4.

    Article  CAS  PubMed  Google Scholar 

  23. Volkmann AW. Ueber die Bewegungen des Athmens und Schluckens, mit besonderer Berucksichtigung neurologischer Streitfragen. Arch Anat Physiol Wissens Med. 1841;1:332–60.

    Google Scholar 

  24. Marey E-J. Physiologie medicale de la circulation du sang : basee sur l’etude graphique des mouvements du coeur et du pouls arteriel avec application aux maladies de l’appareil circulatoire. Paris: Delahaye; 1863.

    Google Scholar 

  25. Hering KEK, Breuer J. Die Selbststeuerung der Athmung durch den Nervus vagus. Sitzungsberichte der kaiserlichen Akademie der Wissenschaften II. Abtheilung. 1868;58:909–37.

    Google Scholar 

  26. Krogh A, Lindhard J. The regulation of respiration and circulation during the initial stages of muscular work. J Physiol. 1913;47:112–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alam M, Smirk FH. Observations in man upon a blood pressure raising reflex arising from the voluntary muscles. J Physiol. 1937;89:372–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heymans C, Pannier R. Presso-receptors of the carotid sinus and respiration. J Physiol. 1946;104:40.

    CAS  PubMed  Google Scholar 

  29. Bouckaert JJ, Heymans C. Carotid sinus reflexes. Influence of central blood-pressure and blood supply on respiratory and vaso-motor centres. J Physiol. 1933;79:49–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heymans C. Baroceptor and chemoceptor reflexes in monkeys. Circ Res. 1958;6:567–9.

    Article  CAS  PubMed  Google Scholar 

  31. Heymans C, Delaunois AL, Rovati AL. Action of drugs on pulsatory expansion of the carotid sinus and carotid artery. Arch Int Pharmacodyn Ther. 1957;109:245–50.

    CAS  PubMed  Google Scholar 

  32. Heymans C. Action of drugs on carotid body and sinus. Pharmacol Rev. 1955;7:119–42.

    CAS  PubMed  Google Scholar 

  33. Heymans C, Delaunois AL, Martini L. Hexamethonium and conduction and excitability in the vagal center. Arch Int Pharmacodyn Ther. 1954;97:313–6.

    CAS  PubMed  Google Scholar 

  34. Heymans C. Action of drugs on carotid sinus baroceptors. Acta Physiol Scand. 1953;29:72–3.

    Article  CAS  PubMed  Google Scholar 

  35. Heymans C, Hyde JE, Terp P, De Vleeschhouwer G. On the pharmacology of phenyl-diguanide in dogs. Arch Int Pharmacodyn Ther. 1952;90:140–56.

    CAS  PubMed  Google Scholar 

  36. Morrison JL, Heymans C, Richardson AP, Walker HA. The comparative action of certain ganglionic blocking agents. Arch Int Pharmacodyn Ther. 1951;86:203–13.

    CAS  PubMed  Google Scholar 

  37. Heymans C, de Vleeschhouwer G, van den Heuvel-Heymans G. Adrenolytic drug and action of adrenaline and noradrenaline on carotid sinus. Arch Int Pharmacodyn Ther. 1951;85:188–93.

    CAS  PubMed  Google Scholar 

  38. Heymans C, Delaunois AL, Verbeke R. Nicotine and cardio-inhibitory vagal centre. Arch Int Pharmacodyn Ther. 1950;84:221–6.

    CAS  PubMed  Google Scholar 

  39. Walker HA, Wilson S, Heymans C, Richardson AP. The effect of C-7337 on the cardiovascular system of dogs. Arch Int Pharmacodyn Ther. 1950;82:395–415.

    CAS  PubMed  Google Scholar 

  40. Heymans C, Estable JJ. On new nicotinolytic compounds. Science. 1949;109:122.

    Article  CAS  PubMed  Google Scholar 

  41. Heymans C, Casier H. Inactivation of cholinesterases by di-isopropylfluorophosphate in chronic experiments. Arch Int Pharmacodyn Ther. 1948;77:64–6.

    CAS  PubMed  Google Scholar 

  42. Cottle MK. Degeneration studies of primary afferents of IXth and Xth cranial nerves in the cat. J Comp Neurol. 1964;122:329–45.

    Article  CAS  PubMed  Google Scholar 

  43. Trouth CO, Loeschcke HH, Berndt J. Topography of the circulatory responses to electrical stimulation in the medulla oblongata. Relationship to respiratory responses. Pflugers Arch. 1973;339:185–201.

    Article  CAS  PubMed  Google Scholar 

  44. Paintal AS. Vagal sensory receptors and their reflex effects. Physiol Rev. 1973;53:159–227.

    CAS  PubMed  Google Scholar 

  45. Bevegard BS, Shepherd JT. Circulatory effects of stimulating the carotid arterial stretch receptors in man at rest and during exercise. J Clin Invest. 1966;45:132–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Robinson BF, Epstein SE, Beiser GD, Braunwald E. Control of heart rate by the autonomic nervous system. Studies in man on the interrelation between baroreceptor mechanisms and exercise. Circ Res. 1966;19:400–11.

    Article  CAS  PubMed  Google Scholar 

  47. Wallin BG, Charkoudian N. Sympathetic neural control of integrated cardiovascular function: insights from measurement of human sympathetic nerve activity. Muscle Nerve. 2007;36:595–614.

    Article  CAS  PubMed  Google Scholar 

  48. Delius W, Hagbarth KE, Hongell A, Wallin BG. General characteristics of sympathetic activity in human muscle nerves. Acta Physiol Scand. 1972;84:65–81.

    Article  CAS  PubMed  Google Scholar 

  49. Hagbarth KE, Hallin RG, Hongell A, Torebjork HE, Wallin BG. General characteristics of sympathetic activity in human skin nerves. Acta Physiol Scand. 1972;84:164–76.

    Article  CAS  PubMed  Google Scholar 

  50. Vallbo AB, Hagbarth KE, Torebjork HE, Wallin BG. Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiol Rev. 1979;59:919–57.

    CAS  PubMed  Google Scholar 

  51. Young CN, Keller DM, Crandall CG, Fadel PJ. Comparing resting skin sympathetic nerve activity between groups: caution needed. J Appl Physiol (1985). 2009;106:1751–2; author reply 1753.

    Article  Google Scholar 

  52. Fadel PJ, Ogoh S, Watenpaugh DE, et al. Carotid baroreflex regulation of sympathetic nerve activity during dynamic exercise in humans. Am J Physiol Heart Circ Physiol. 2001;280:H1383–90.

    CAS  PubMed  Google Scholar 

  53. Ichinose M, Saito M, Fujii N, et al. Modulation of the control of muscle sympathetic nerve activity during incremental leg cycling. J Physiol. 2008;586:2753–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ichinose M, Saito M, Kondo N, Nishiyasu T. Baroreflex and muscle metaboreflex: control of muscle sympathetic nerve activity. Med Sci Sports Exerc. 2008;40:2037–45.

    Article  PubMed  Google Scholar 

  55. Saito M, Mano T, Iwase S. Sympathetic nerve activity related to local fatigue sensation during static contraction. J Appl Physiol. 1989;67:980–4.

    CAS  PubMed  Google Scholar 

  56. Saito M, Nakamura Y. Cardiac autonomic control and muscle sympathetic nerve activity during dynamic exercise. Jpn J Physiol. 1995;45:961–77.

    Article  CAS  PubMed  Google Scholar 

  57. Saito M, Tsukanaka A, Yanagihara D, Mano T. Muscle sympathetic nerve responses to graded leg cycling. J Appl Physiol. 1993;75:663–7.

    CAS  PubMed  Google Scholar 

  58. Ray CA, Rea RF, Clary MP, Mark AL. Muscle sympathetic nerve responses to dynamic one-legged exercise: effect of body posture. Am J Physiol. 1993;264:H1–7.

    CAS  PubMed  Google Scholar 

  59. Esler M, Lambert G, Jennings G. Increased regional sympathetic nervous activity in human hypertension: causes and consequences. J Hypertens Suppl. 1990;8:S53–7.

    Article  CAS  PubMed  Google Scholar 

  60. Berger RD, Saul JP, Cohen RJ. Transfer function analysis of autonomic regulation. I. Canine atrial rate response. Am J Physiol. 1989;256:H142–52.

    CAS  PubMed  Google Scholar 

  61. Saul JP, Berger RD, Albrecht P, Stein SP, Chen MH, Cohen RJ. Transfer function analysis of the circulation: unique insights into cardiovascular regulation. Am J Physiol. 1991;261:H1231–45.

    CAS  PubMed  Google Scholar 

  62. Task-Force. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93:1043–65.

    Article  Google Scholar 

  63. Eckberg DL. Physiological basis for human autonomic rhythms. Ann Med. 2000;32:341–9.

    Article  CAS  PubMed  Google Scholar 

  64. Sandhu KS, Khan P, Panting J, Nadar S. Tilt-table test: its role in modern practice. Clin Med. 2013;13:227–32.

    Article  Google Scholar 

  65. Fadel PJ, Ogoh S, Keller DM, Raven PB. Recent insights into carotid baroreflex function in humans using the variable pressure neck chamber. Exp Physiol. 2003;88:671–80.

    Article  PubMed  Google Scholar 

  66. Ogoh S, Fisher JP, Dawson EA, White MJ, Secher NH, Raven PB. Autonomic nervous system influence on arterial baroreflex control of heart rate during exercise in humans. J Physiol. 2005;566:599–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Young CN, Fisher JP, Fadel PJ. The ups and downs of assessing baroreflex function. J Physiol. 2008;586:1209–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Potts JT, Shi X, Raven PB. Cardiopulmonary baroreceptors modulate carotid baroreflex control of heart rate during dynamic exercise in humans. Am J Physiol. 1995;268:H1567–76.

    CAS  PubMed  Google Scholar 

  69. Potts JT, Shi XR, Raven PB. Carotid baroreflex responsiveness during dynamic exercise in humans. Am J Physiol. 1993;265:H1928–38.

    CAS  PubMed  Google Scholar 

  70. Raven PB, Potts JT, Shi X. Baroreflex regulation of blood pressure during dynamic exercise. Exerc Sport Sci Rev. 1997;25:365–89.

    Article  CAS  PubMed  Google Scholar 

  71. Shi X, Potts JT, Foresman BH, Raven PB. Carotid baroreflex responsiveness to lower body positive pressure-induced increases in central venous pressure. Am J Physiol. 1993;265:H918–22.

    CAS  PubMed  Google Scholar 

  72. Mark AL, Mancia G. Cardiopulmonary baroreflexes in humans. In: Shepherd JT, Abboud FM, editors. Handbook of physiology. Bethesda: American Physiological Society; 1983. p. 755–93.

    Google Scholar 

  73. White DW, Raven PB. Autonomic neural control of heart rate during dynamic exercise: revisited. J Physiol. 2014;592:2491–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Norton KH, Boushel R, Strange S, Saltin B, Raven PB. Resetting of the carotid arterial baroreflex during dynamic exercise in humans. J Appl Physiol (1985). 1999;87:332–8.

    CAS  Google Scholar 

  75. Mark AL, Mancia G. Cardiopulmonary baroreflexes in humans. In: Shepherd JT, Abboud FM, Geiger SR, editors. Handbook of physiology, the cardiovascular system, peripheral circulation and organ blood flow. Bethesda: American Physiological Society; 1983.

    Google Scholar 

  76. Mendonca GV, Fernhall B, Heffernan KS, Pereira FD. Spectral methods of heart rate variability analysis during dynamic exercise. Clin Auton Res. 2009;19:237–45.

    Article  PubMed  Google Scholar 

  77. Yamamoto Y, Hughson RL, Peterson JC. Autonomic control of heart rate during exercise studied by heart rate variability spectral analysis. J Appl Physiol (1985). 1991;71:1136–42.

    CAS  Google Scholar 

  78. Imai K, Sato H, Hori M, et al. Vagally mediated heart rate recovery after exercise is accelerated in athletes but blunted in patients with chronic heart failure. J Am Coll Cardiol. 1994;24:1529–35.

    Article  CAS  PubMed  Google Scholar 

  79. Gallagher JR, Brouha L. V. A simple method of evaluating fitness in boys: the step test. Yale J Biol Med. 1943;15:769–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Master AM. The two-step exercise electrocardiogram: a test for coronary insufficiency. Ann Intern Med. 1950;32:842–63.

    Article  CAS  PubMed  Google Scholar 

  81. Coote JH. Recovery of heart rate following intense dynamic exercise. Exp Physiol. 2010;95:431–40.

    Article  PubMed  Google Scholar 

  82. Kannankeril PJ, Goldberger JJ. Parasympathetic effects on cardiac electrophysiology during exercise and recovery. Am J Physiol Heart Circ Physiol. 2002;282:H2091–8.

    Article  CAS  PubMed  Google Scholar 

  83. Kannankeril PJ, Le FK, Kadish AH, Goldberger JJ. Parasympathetic effects on heart rate recovery after exercise. J Investig Med. 2004;52:394–401.

    PubMed  Google Scholar 

  84. Pierpont GL, Voth EJ. Assessing autonomic function by analysis of heart rate recovery from exercise in healthy subjects. Am J Cardiol. 2004;94:64–8.

    Article  PubMed  Google Scholar 

  85. Savin WM, Davidson DM, Haskell WL. Autonomic contribution to heart rate recovery from exercise in humans. J Appl Physiol Respir Environ Exerc Physiol. 1982;53:1572–5.

    CAS  PubMed  Google Scholar 

  86. Goldberger JJ, Le FK, Lahiri M, Kannankeril PJ, Ng J, Kadish AH. Assessment of parasympathetic reactivation after exercise. Am J Physiol Heart Circ Physiol. 2006;290:H2446–52.

    Article  CAS  PubMed  Google Scholar 

  87. Halliwill JR, Taylor JA, Eckberg DL. Impaired sympathetic vascular regulation in humans after acute dynamic exercise. J Physiol. 1996;495(Pt 1):279–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Halliwill JR, Buck TM, Lacewell AN, Romero SA. Postexercise hypotension and sustained postexercise vasodilatation: what happens after we exercise? Exp Physiol. 2013;98:7–18.

    Article  PubMed  Google Scholar 

  89. Fisher JP. Autonomic control of the heart during exercise in humans: role of skeletal muscle afferents. Exp Physiol. 2014;99(2):300–5.

    Article  PubMed  Google Scholar 

  90. American College of Sports Medicine. Position Stand. Physical activity, physical fitness, and hypertension. Med Sci Sports Exerc. 1993;25:i–x.

    Google Scholar 

  91. Tulppo MP, Makikallio TH, Seppanen T, Laukkanen RT, Huikuri HV. Vagal modulation of heart rate during exercise: effects of age and physical fitness. Am J Physiol. 1998;274:H424–9.

    CAS  PubMed  Google Scholar 

  92. MacDonnell SM, Kubo H, Crabbe DL, et al. Improved myocardial beta-adrenergic responsiveness and signaling with exercise training in hypertension. Circulation. 2005;111:3420–8.

    Article  CAS  PubMed  Google Scholar 

  93. Iellamo F, Legramante JM, Massaro M, Raimondi G, Galante A. Effects of a residential exercise training on baroreflex sensitivity and heart rate variability in patients with coronary artery disease: a randomized, controlled study. Circulation. 2000;102:2588–92.

    Article  CAS  PubMed  Google Scholar 

  94. Grassi G, Seravalle G, Calhoun DA, Mancia G. Physical training and baroreceptor control of sympathetic nerve activity in humans. Hypertension. 1994;23:294–301.

    Article  CAS  PubMed  Google Scholar 

  95. Seals DR, Esler MD. Human ageing and the sympathoadrenal system. J Physiol. 2000;528:407–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kaye DM, Lefkovits J, Jennings GL, Bergin P, Broughton A, Esler MD. Adverse consequences of high sympathetic nervous activity in the failing human heart. J Am Coll Cardiol. 1995;26:1257–63.

    Article  CAS  PubMed  Google Scholar 

  97. Julius S, Nesbitt S. Sympathetic overactivity in hypertension. A moving target. Am J Hypertens. 1996;9:113S–20.

    Article  CAS  PubMed  Google Scholar 

  98. Julius S. The evidence for a pathophysiologic significance of the sympathetic overactivity in hypertension. Clin Exp Hypertens. 1996;18:305–21.

    Article  CAS  PubMed  Google Scholar 

  99. Mueller PJ. Exercise training attenuates increases in lumbar sympathetic nerve activity produced by stimulation of the rostral ventrolateral medulla. J Appl Physiol (1985). 2007;102:803–13.

    Article  CAS  Google Scholar 

  100. Nelson AJ, Juraska JM, Musch TI, Iwamoto GA. Neuroplastic adaptations to exercise: neuronal remodeling in cardiorespiratory and locomotor areas. J Appl Physiol (1985). 2005;99:2312–22.

    Article  Google Scholar 

  101. Billman GE, Kukielka M. Effect of endurance exercise training on heart rate onset and heart rate recovery responses to submaximal exercise in animals susceptible to ventricular fibrillation. J Appl Physiol (1985). 2007;102:231–40.

    Article  Google Scholar 

  102. Laterza MC, de Matos LD, Trombetta IC, et al. Exercise training restores baroreflex sensitivity in never-treated hypertensive patients. Hypertension. 2007;49:1298–306.

    Article  CAS  PubMed  Google Scholar 

  103. Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med. 2002;136:493–503.

    Article  PubMed  Google Scholar 

  104. Chobanian AV, Bakris GL, Black HR, et al. The seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003;289:2560–72.

    Article  CAS  PubMed  Google Scholar 

  105. Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA. American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc. 2004;36:533–53.

    Article  PubMed  Google Scholar 

  106. Roveda F, Middlekauff HR, Rondon MU, et al. The effects of exercise training on sympathetic neural activation in advanced heart failure: a randomized controlled trial. J Am Coll Cardiol. 2003;42:854–60.

    Article  PubMed  Google Scholar 

  107. Katona PG, McLean M, Dighton DH, Guz A. Sympathetic and parasympathetic cardiac control in athletes and nonathletes at rest. J Appl Physiol Respir Environ Exerc Physiol. 1982;52:1652–7.

    CAS  PubMed  Google Scholar 

  108. al-Ani M, Munir SM, White M, Townend J, Coote JH. Changes in R-R variability before and after endurance training measured by power spectral analysis and by the effect of isometric muscle contraction. Eur J Appl Physiol Occup Physiol. 1996;74:397–403.

    CAS  PubMed  Google Scholar 

  109. Melanson EL, Freedson PS. The effect of endurance training on resting heart rate variability in sedentary adult males. Eur J Appl Physiol. 2001;85:442–9.

    Article  CAS  PubMed  Google Scholar 

  110. Okazaki K, Iwasaki K, Prasad A, et al. Dose-response relationship of endurance training for autonomic circulatory control in healthy seniors. J Appl Physiol (1985). 2005;99:1041–9.

    Article  Google Scholar 

  111. Cozza IC, Di Sacco TH, Mazon JH, et al. Physical exercise improves cardiac autonomic modulation in hypertensive patients independently of angiotensin-converting enzyme inhibitor treatment. Hypertens Res. 2012;35:82–7.

    Article  PubMed  Google Scholar 

  112. Collier SR, Kanaley JA, Carhart Jr R, et al. Cardiac autonomic function and baroreflex changes following 4 weeks of resistance versus aerobic training in individuals with pre-hypertension. Acta Physiol (Oxf). 2009;195:339–48.

    Article  CAS  Google Scholar 

  113. Mendonca GV, Pereira FD, Fernhall B. Heart rate recovery and variability following combined aerobic and resistance exercise training in adults with and without down syndrome. Res Dev Disabil. 2013;34:353–61.

    Article  PubMed  Google Scholar 

  114. Kanaley JA, Goulopoulou S, Franklin RM, et al. Plasticity of heart rate signalling and complexity with exercise training in obese individuals with and without type 2 diabetes. Int J Obes (Lond). 2009;33:1198–206.

    Article  CAS  Google Scholar 

  115. Kiviniemi AM, Hautala AJ, Kinnunen H, et al. Daily exercise prescription on the basis of HR variability among men and women. Med Sci Sports Exerc. 2010;42:1355–63.

    Article  PubMed  Google Scholar 

  116. Heffernan KS, Fahs CA, Shinsako KK, Jae SY, Fernhall B. Heart rate recovery and heart rate complexity following resistance exercise training and detraining in young men. Am J Physiol Heart Circ Physiol. 2007;293:H3180–6.

    Article  CAS  PubMed  Google Scholar 

  117. Collier SR, Kanaley JA, Carhart Jr R, et al. Effect of 4 weeks of aerobic or resistance exercise training on arterial stiffness, blood flow and blood pressure in pre- and stage-1 hypertensives. J Hum Hypertens. 2008;22:678–86.

    Article  CAS  PubMed  Google Scholar 

  118. Baynard T, Goulopoulou S, Sosnoff RF, Fernhall B, Kanaley JA. Cardiovagal modulation and efficacy of aerobic exercise training in obese individuals. Med Sci Sports Exerc. 2014;46:369–75.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Kiviniemi AM, Hautala AJ, Kinnunen H, Tulppo MP. Endurance training guided individually by daily heart rate variability measurements. Eur J Appl Physiol. 2007;101:743–51.

    Article  PubMed  Google Scholar 

  120. Iliescu R, Tudorancea I, Irwin ED, Lohmeier TE. Chronic baroreflex activation restores spontaneous baroreflex control and variability of heart rate in obesity-induced hypertension. Am J Physiol Heart Circ Physiol. 2013;305:H1080–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lohmeier TE, Iliescu R, Dwyer TM, Irwin ED, Cates AW, Rossing MA. Sustained suppression of sympathetic activity and arterial pressure during chronic activation of the carotid baroreflex. Am J Physiol Heart Circ Physiol. 2010;299:H402–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lohmeier TE, Iliescu R. Lowering of blood pressure by chronic suppression of central sympathetic outflow: insight from prolonged baroreflex activation. J Appl Physiol (1985). 2012;113:1652–8.

    Article  Google Scholar 

  123. Heusser K, Tank J, Engeli S, et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension. 2010;55:619–26.

    Article  CAS  PubMed  Google Scholar 

  124. Rowell LB. Human cardiovascular control. New York: Oxford University Press; 1993.

    Google Scholar 

  125. Sevre K, Lefrandt JD, Nordby G, et al. Autonomic function in hypertensive and normotensive subjects: the importance of gender. Hypertension. 2001;37:1351–6.

    Article  CAS  PubMed  Google Scholar 

  126. Matsukawa T, Gotoh E, Hasegawa O, Shionoiri H, Tochikubo O, Ishii M. Reduced baroreflex changes in muscle sympathetic nerve activity during blood pressure elevation in essential hypertension. J Hypertens. 1991;9:537–42.

    Article  CAS  PubMed  Google Scholar 

  127. Somers VK, Conway J, Johnston J, Sleight P. Effects of endurance training on baroreflex sensitivity and blood pressure in borderline hypertension. Lancet. 1991;337:1363–8.

    Article  CAS  PubMed  Google Scholar 

  128. Monahan KD, Dinenno FA, Tanaka H, Clevenger CM, DeSouza CA, Seals DR. Regular aerobic exercise modulates age-associated declines in cardiovagal baroreflex sensitivity in healthy men. J Physiol. 2000;529(Pt 1):263–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Deley G, Picard G, Taylor JA. Arterial baroreflex control of cardiac vagal outflow in older individuals can be enhanced by aerobic exercise training. Hypertension. 2009;53:826–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fu Q, Levine BD. Exercise and the autonomic nervous system. Handb Clin Neurol. 2013;117:147–60.

    Article  PubMed  Google Scholar 

  131. Vongpatanasin W, Wang Z, Arbique D, et al. Functional sympatholysis is impaired in hypertensive humans. J Physiol. 2011;589:1209–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mortensen SP, Nyberg M, Winding K, Saltin B. Lifelong physical activity preserves functional sympatholysis and purinergic signalling in the ageing human leg. J Physiol. 2012;590:6227–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mortensen SP, Morkeberg J, Thaning P, Hellsten Y, Saltin B. Two weeks of muscle immobilization impairs functional sympatholysis but increases exercise hyperemia and the vasodilatory responsiveness to infused ATP. Am J Physiol Heart Circ Physiol. 2012;302:H2074–82.

    Article  CAS  PubMed  Google Scholar 

  134. Zucker IH, Patel KP, Schultz HD, Li YF, Wang W, Pliquett RU. Exercise training and sympathetic regulation in experimental heart failure. Exerc Sport Sci Rev. 2004;32:107–11.

    Article  PubMed  Google Scholar 

  135. Trombetta IC, Batalha LT, Rondon MU, et al. Weight loss improves neurovascular and muscle metaboreflex control in obesity. Am J Physiol Heart Circ Physiol. 2003;285:H974–82.

    Article  CAS  PubMed  Google Scholar 

  136. Hart ECJ, Charkoudian N. Sympathetic neural regulation of blood pressure: influences of sex and aging. Physiology (Bethesda). 2014;29:8–15.

    CAS  Google Scholar 

  137. Lefrandt JD, Heitman J, Castellano M, et al. Sex differences in autonomic function in patients with mild to moderate hypertension. Circulation. 1999;100:608.

    Article  Google Scholar 

  138. Liao DP, Barnes RW, Chambless LE, Simpson RJ, Sorlie P, Heiss G. Age, race, and sex-differences in autonomic cardiac-function measured by spectral-analysis of heart-rate-variability—the ARIC study. Atherosclerosis risk in communities. Am J Cardiol. 1995;76:906–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. White .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

White, D.W., Fernhall, B. (2015). Effects of Exercise on Blood Pressure and Autonomic Function and Other Hemodynamic Regulatory Factors. In: Pescatello, L. (eds) Effects of Exercise on Hypertension. Molecular and Translational Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-17076-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17076-3_9

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-17075-6

  • Online ISBN: 978-3-319-17076-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics