Skip to main content
Log in

Spontaneous cardiac baroreflex sensitivity is enhanced during post-exercise ischemia in men but not in women

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effect of isolated muscle metaboreflex activation on spontaneous cardiac baroreflex sensitivity (cBRS), and to characterize the potential sex-related differences in this interaction in young healthy subjects.

Methods

40 volunteers (20 men and 20 women, age: 22 ± 0.4 year) were recruited. After 5-min rest period, the subjects performed 90 s of isometric handgrip exercise at 40% of maximal voluntary contraction followed by 3 min of post-exercise ischemia (PEI). Beat-to-beat heart rate and arterial blood pressure were continuously measured by finger photopletysmography. Spontaneous cBRS was assessed using the sequence technique and heart rate variability was measured in time (RMSSD—standard deviation of the RR intervals) and frequency domains (LF—low and HF—high frequency power).

Results

Resting cBRS was similar between men and women. During PEI, cBRS was increased in men (Δ3.0 ± 1.1 ms mmHg− 1, P = 0.03) but was unchanged in women (Δ-0.04 ± 1.0 ms mmHg− 1, P = 0.97). In addition, RMSSD and HF power of heart rate variability increased in women (Δ7.4 ± 2.6 ms, P = 0.02; Δ373.4 ± 197.3 ms2; P = 0.04, respectively) and further increased in men (Δ26.4 ± 7.1 ms, P < 0.01; Δ1874.9 ± 756.2 ms2; P = 0.02, respectively). Arterial blood pressure increased from rest during handgrip exercise and remained elevated during PEI in both groups, however, these responses were attenuated in women.

Conclusions

These findings allow us to suggest a sex-related difference in spontaneous cBRS elicited by isolated muscle metaboreflex activation in healthy humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ANOVA:

Analyses of variance

BMI:

Body mass index

BSA:

Body surface area

cBRS:

Cardiac baroreflex sensitivity

CI:

Cardiac index

CO:

Cardiac output

DBP:

Diastolic blood pressure

HF:

High frequency

HR:

Heart rate

HRV:

Heart rate variability

ICC:

Intraclass correlation coefficient

IHG:

Isometric handgrip

LF:

Low frequency

MBP:

Mean blood pressure

MVC:

Maximal voluntary contraction

NK1-R:

Neurokinin-1 receptor

NTS:

Nucleus tractus solitaries

PEI:

Post-exercise ischemia

RMSSD:

Root of the mean of the sum of successive differences

SBP:

Systolic blood pressure

SV:

Stroke volume

TVC:

Total vascular conductance

TVCI:

Vascular conductance index

VLF:

Very low frequency

References

  • (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 93(5):1043–1065

  • Abdel-Rahman AR, Merrill RH, Wooles WR (1994) Gender-related differences in the baroreceptor reflex control of heart rate in normotensive humans. J Appl Physiol (1985) 77(2):606–613

    Article  CAS  Google Scholar 

  • Antonino D, Teixeira AL, Maia-Lopes PM, Souza MC, Sabino-Carvalho JL, Murray AR, Deuchars J, Vianna LC (2017) Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: A randomized placebo-controlled trial. Brain Stimul 10(5):875–881. https://doi.org/10.1016/j.brs.2017.05.006

    Article  PubMed  Google Scholar 

  • Beske SD, Alvarez GE, Ballard TP, Davy KP (2001) Gender difference in cardiovagal baroreflex gain in humans. J Appl Physiol (1985) 91(5):2088–2092

  • Carrington CA, White MJ (2001) Exercise-induced muscle chemoreflex modulation of spontaneous baroreflex sensitivity in man. J Physiol 536(Pt 3):957–962

    Article  CAS  Google Scholar 

  • Chen CY, Bonham AC (2010) Postexercise hypotension: central mechanisms. Exerc Sport Sci Rev 38(3):122–127

    Article  CAS  Google Scholar 

  • Chen CY, Bechtold AG, Tabor J, Bonham AC (2009) Exercise reduces GABA synaptic input onto nucleus tractus solitarii baroreceptor second-order neurons via NK1 receptor internalization in spontaneously hypertensive rats. J Neurosci 29(9):2754–2761

    Article  CAS  Google Scholar 

  • Convertino VA (1998) Gender differences in autonomic functions associated with blood pressure regulation. Am J Physiol 275(6 Pt 2):R1909–R1920

    CAS  PubMed  Google Scholar 

  • Cui J, Wilson TE, Shibasaki M, Hodges NA, Crandall CG (2001) Baroreflex modulation of muscle sympathetic nerve activity during posthandgrip muscle ischemia in humans. J Appl Physiol (1985) 91(4):1679–1686

    Article  CAS  Google Scholar 

  • Dipla K, Papadopoulos S, Zafeiridis A, Kyparos A, Nikolaidis MG, Vrabas IS (2013) Determinants of muscle metaboreflex and involvement of baroreflex in boys and young men. Eur J Appl Physiol 113(4):827–838

    Article  Google Scholar 

  • Du Bois D, Du Bois EF (1989) A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 5(5):303–311 (discussion 312–303)

    CAS  PubMed  Google Scholar 

  • Ettinger SM, Silber DH, Collins BG, Gray KS, Sutliff G, Whisler SK, McClain JM, Smith MB, Yang QX, Sinoway LI (1996) Influences of gender on sympathetic nerve responses to static exercise. J Appl Physiol (1985) 80(1):245–251

    Article  CAS  Google Scholar 

  • Fadel PJ, Raven PB (2012) Human investigations into the arterial and cardiopulmonary baroreflexes during exercise. Exp Physiol 97(1):39–50. https://doi.org/10.1113/expphysiol.2011.057554

    Article  PubMed  Google Scholar 

  • Fisher JP, Young CN, Fadel PJ (2008) Effect of muscle metaboreflex activation on carotid-cardiac baroreflex function in humans. Am J Physiol Heart Circ Physiol 294(5):H2296–H2304. https://doi.org/10.1152/ajpheart.91497.2007

    Article  CAS  PubMed  Google Scholar 

  • Fisher JP, Seifert T, Hartwich D, Young CN, Secher NH, Fadel PJ (2010) Autonomic control of heart rate by metabolically sensitive skeletal muscle afferents in humans. J Physiol 588(Pt 7):1117–1127. https://doi.org/10.1113/jphysiol.2009.185470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher JP, Young CN, Fadel PJ (2015) Autonomic adjustments to exercise in humans. Compr Physiol 5(2):475–512. https://doi.org/10.1002/cphy.c140022

    Article  PubMed  Google Scholar 

  • Hart EC, Charkoudian N (2014) Sympathetic neural regulation of blood pressure: influences of sex and aging. Physiol (Bethesda) 29(1):8–15. https://doi.org/10.1152/physiol.00031.2013

    Article  CAS  Google Scholar 

  • Hartwich D, Dear WE, Waterfall JL, Fisher JP (2011) Effect of muscle metaboreflex activation on spontaneous cardiac baroreflex sensitivity during exercise in humans. J Physiol 589(Pt 24):6157–6171. https://doi.org/10.1113/jphysiol.2011.219964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartwich D, Aldred S, Fisher JP (2013) Influence of menstrual cycle phase on muscle metaboreflex control of cardiac baroreflex sensitivity, heart rate and blood pressure in humans. Exp Physiol 98(1):220–232. https://doi.org/10.1113/expphysiol.2012.066498

    Article  PubMed  Google Scholar 

  • Hayward CS, Kelly RP (1997) Gender-related differences in the central arterial pressure waveform. J Am Coll Cardiol 30(7):1863–1871

    Article  CAS  Google Scholar 

  • Hopkins WG (2000) Measures of reliability in sports medicine and science. Sports Med 30(1):1–15

    Article  CAS  Google Scholar 

  • Huikuri HV, Pikkujamsa SM, Airaksinen KE, Ikaheimo MJ, Rantala AO, Kauma H, Lilja M, Kesaniemi YA (1996) Sex-related differences in autonomic modulation of heart rate in middle-aged subjects. Circulation 94(2):122–125

    Article  CAS  Google Scholar 

  • Ichinose M, Saito M, Wada H, Kitano A, Kondo N, Nishiyasu T (2002) Modulation of arterial baroreflex dynamic response during muscle metaboreflex activation in humans. J Physiol 544(Pt 3):939–948

    Article  CAS  Google Scholar 

  • Iellamo F, Massaro M, Raimondi G, Peruzzi G, Legramante JM (1999a) Role of muscular factors in cardiorespiratory responses to static exercise: contribution of reflex mechanisms. J Appl Physiol (1985) 86(1):174–180

    Article  CAS  Google Scholar 

  • Iellamo F, Pizzinelli P, Massaro M, Raimondi G, Peruzzi G, Legramante JM (1999b) Muscle metaboreflex contribution to sinus node regulation during static exercise: insights from spectral analysis of heart rate variability. Circulation 100(1):27–32

    Article  CAS  Google Scholar 

  • Jarvis SS, VanGundy TB, Galbreath MM, Shibata S, Okazaki K, Reelick MF, Levine BD, Fu Q (2011) Sex differences in the modulation of vasomotor sympathetic outflow during static handgrip exercise in healthy young humans. Am J Physiol Regul Integr Comp Physiol 301(1):20

    Article  Google Scholar 

  • Joyner MJ, Barnes JN, Hart EC, Wallin BG, Charkoudian N (2015) Neural control of the circulation: how sex and age differences interact in humans. Compr Physiol 5(1):193–215

    PubMed  PubMed Central  Google Scholar 

  • Kaufman MP (2012) The exercise pressor reflex in animals. Exp Physiol 97(1):51–58. https://doi.org/10.1113/expphysiol.2011.057539

    Article  PubMed  Google Scholar 

  • Mitchell JH (1990) J.B. Wolffe memorial lecture. Neural control of the circulation during exercise. Med Sci Sports Exerc 22(2):141–154

    Article  CAS  Google Scholar 

  • Mitchell JH, Kaufman MP, Iwamoto GA (1983) The exercise pressor reflex: its cardiovascular effects, afferent mechanisms, and central pathways. Annu Rev Physiol 45:229–242. https://doi.org/10.1146/annurev.ph.45.030183.001305

    Article  CAS  PubMed  Google Scholar 

  • Notay K, Lee JB, Incognito AV, Seed JD, Arthurs AA, Millar PJ (2018) Muscle strength influences pressor responses to static handgrip in men and women. Med Sci Sports Exerc 50(4):778–784

    Article  Google Scholar 

  • Parati G, Di Rienzo M, Mancia G (2000) How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. J Hypertens 18(1):7–19

    Article  CAS  Google Scholar 

  • Pelletier G, Liao N, Follea N, Govindan MV (1988) Mapping of estrogen receptor-producing cells in the rat brain by in situ hybridization. Neurosci Lett 94(1–2):23–28

    Article  CAS  Google Scholar 

  • Potts JT (2006) Inhibitory neurotransmission in the nucleus tractus solitarii: implications for baroreflex resetting during exercise. Exp Physiol 91(1):59–72. https://doi.org/10.1113/expphysiol.2005.032227

    Article  CAS  PubMed  Google Scholar 

  • Potts JT, Mitchell JH (1998) Rapid resetting of carotid baroreceptor reflex by afferent input from skeletal muscle receptors. Am J Physiol 275(6 Pt 2):H2000–H2008

    CAS  PubMed  Google Scholar 

  • Potts JT, Shi XR, Raven PB (1993) Carotid baroreflex responsiveness during dynamic exercise in humans. Am J Physiol 265(6 Pt 2):H1928–H1938

    CAS  PubMed  Google Scholar 

  • Raven PB, Fadel PJ, Ogoh S (2006) Arterial baroreflex resetting during exercise: a current perspective. Exp Physiol 91(1):37–49. https://doi.org/10.1113/expphysiol.2005.032250

    Article  PubMed  Google Scholar 

  • Rowell LB, O’Leary DS (1990) Reflex control of the circulation during exercise: chemoreflexes and mechanoreflexes. J Appl Physiol (1985) 69(2):407–418

    Article  CAS  Google Scholar 

  • Sabino-Carvalho JL, Teixeira AL, Samora M, Daher M, Vianna LC (2018) Blunted cardiovascular responses to exercise in Parkinson’s disease patients: role of the muscle metaboreflex. J Neurophysiol 120(4):1516–1524

    Article  CAS  Google Scholar 

  • Sala-Mercado JA, Ichinose M, Hammond RL, Ichinose T, Pallante M, Stephenson LW, O’Leary DS, Iellamo F (2007) Muscle metaboreflex attenuates spontaneous heart rate baroreflex sensitivity during dynamic exercise. Am J Physiol Heart Circ Physiol 292(6):H2867–H2873. https://doi.org/10.1152/ajpheart.00043.2007

    Article  CAS  PubMed  Google Scholar 

  • Sheehan D, Mulholland JH, Safiroff B (1941) Surgical anatomy of the carotid sinus nerve. Anat Rec 80:431–442

    Article  Google Scholar 

  • Sheriff DD, O’Leary DS, Scher AM, Rowell LB (1990) Baroreflex attenuates pressor response to graded muscle ischemia in exercising dogs. Am J Physiol 258(2 Pt 2):H305–H310. https://doi.org/10.1152/ajpheart.1990.258.2.H305

    Article  CAS  PubMed  Google Scholar 

  • Simonian SX, Herbison AE (1997) Differential expression of estrogen receptor and neuropeptide Y by brainstem A1 and A2 noradrenaline neurons. Neuroscience 76(2):517–529

    Article  CAS  Google Scholar 

  • Smith JR, Broxterman RM, Hammer SM, Alexander AM, Didier KD, Kurti SP, Barstow TJ, Harms CA (2016) Sex differences in the cardiovascular consequences of the inspiratory muscle metaboreflex. Am J Physiol Regul Integr Comp Physiol 311(3):3

    Article  Google Scholar 

  • Spaak J, Sundblad P, Linnarsson D (1998) Human carotid baroreflex during isometric lower arm contraction and ischemia. Am J Physiol 275(3 Pt 2):H940–H945

    CAS  PubMed  Google Scholar 

  • Teixeira AL, Daher M, Souza MC, Ramos PS, Fisher JP, Vianna LC (2018a) Sympathetically mediated cardiac responses to isolated muscle metaboreflex activation following exercise are modulated by body position in humans. Am J Physiol Heart Circ Physiol 314(3):H593–H602

    PubMed  Google Scholar 

  • Teixeira AL, Ramos PS, Samora M, Sabino-Carvalho JL, Ricardo DR, Colombari E, Vianna LC (2018b) GABAergic contribution to the muscle mechanoreflex-mediated heart rate responses at the onset of exercise in humans. Am J Physiol Heart Circ Physiol 314(4):H716–H723

    Article  CAS  Google Scholar 

  • Teixeira AL, Ritti-Dias R, Antonino D, Bottaro M, Millar PJ, Vianna LC (2018c) Sex differences in cardiac baroreflex sensitivity after isometric handgrip exercise. Med Sci Sports Exerc 50(4):770–777

    Article  Google Scholar 

  • Vianna LC, Fernandes IA, Barbosa TC, Teixeira AL, Nobrega ACL (2018) Capsaicin-based analgesic balm attenuates the skeletal muscle metaboreflex in healthy humans. J Appl Physiol 125(2):362–368

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The time and effort expended by all the volunteer subjects is greatly appreciated.

Funding

This study was supported by grants and scholarships from the Brazilian National Council of Scientific and Technological Development (CNPq), the Foundation for Research Support of Federal District (FAPDF), Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES) and partially supported by an American Physiological Society Arthur C. Guyton Awards for Excellence in Integrative Physiology (to L.C. Vianna).

Author information

Authors and Affiliations

Authors

Contributions

MS and LCV conceived and designed research. MS, ALT, JLSC and LCV performed experiments. MS, ALT and LCV analyzed data. MS, ALT and LCV interpreted results of experiments. MS prepared figures. MS, ALT and LCV drafted manuscript. All authors read and approved final version of manuscript.

Corresponding author

Correspondence to Lauro C. Vianna.

Ethics declarations

Conflict of interest

None of the authors declares a conflict of interest.

Additional information

Communicated by Massimo Pagani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samora, M., Teixeira, A.L., Sabino-Carvalho, J.L. et al. Spontaneous cardiac baroreflex sensitivity is enhanced during post-exercise ischemia in men but not in women. Eur J Appl Physiol 119, 103–111 (2019). https://doi.org/10.1007/s00421-018-4004-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-018-4004-y

Keyword

Navigation