Skip to main content

Advertisement

Log in

Stem cell-based therapies in ischemic heart diseases: a focus on aspects of microcirculation and inflammation

  • Invited Review
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Stem cells possessing the potential to replace damaged myocardium with functional myocytes have drawn increasing attention in the past decade in treating ischemic heart diseases; these diseases are the leading cause of morbidity and mortality in the world. The adult heart has recently been shown to contain a few cardiac stem cells (CSCs) that, in theory, suggest cardiac repair following acute myocardial infarction is possible if the CSC titer could be increased. Stem cell-based therapies, including hematopoietic stem cells and mesenchymal stem cells, were proven to be marginal and transitional. Multiple factors and mechanisms, rather than direct cardiac regeneration are involved in stem cell-mediated cardiac functional improvement. This review will focus on (1) the interaction between inflammation and stem cells; (2) the fate of stem cells at the microcirculatory level, and their subsequent influences on stem cell-based therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abarbanell AM, Wang Y, Herrmann JL, Weil BR, Poynter JA, Manukyan MC, Meldrum DR (2010) Toll-like receptor 2 mediates mesenchymal stem cell-associated myocardial recovery and VEGF production following acute ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 298:H1529–H1536. doi:10.1152/ajpheart.01087.2009

    Article  PubMed  CAS  Google Scholar 

  2. Abbott JD, Huang Y, Liu D, Hickey R, Krause DS, Giordano FJ (2004) Stromal cell-derived factor-1 alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 110:3300–3305. doi:10.1161/01.CIR.0000147780.30124.CF

    Article  PubMed  Google Scholar 

  3. Aicher A, Brenner W, Zuhayra M, Badorff C, Massoudi S, Assmus B, Eckey T, Henze E, Zeiher AM, Dimmeler S (2003) Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 107:2134–2139. doi:10.1161/01.CIR.0000062649.63838.C9

    Article  PubMed  Google Scholar 

  4. Anversa P, Kajstura J, Leri A, Bolli R (2006) Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation 113:1451–1463. doi:10.1161/CIRCULATIONAHA.105.595181

    Article  PubMed  Google Scholar 

  5. Ar’Rajab A, Dawidson I, Fabia R (1996) Reperfusion injury. New Horizons 4:224–234

    PubMed  Google Scholar 

  6. Arslan F, de Kleijn DP, Timmers L, Doevendans PA, Pasterkamp G (2008) Bridging innate immunity and myocardial ischemia/reperfusion injury: the search for therapeutic targets. Curr Pharm Des 14:1205–1216

    Article  PubMed  CAS  Google Scholar 

  7. Bagi Z, Kaley G (2009) Where have all the stem cells gone? Circ Res 104:280–281. doi:10.1161/CIRCRESAHA.108.192641

    Article  PubMed  CAS  Google Scholar 

  8. Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673. doi:10.1038/nature02460

    Article  PubMed  CAS  Google Scholar 

  9. Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzion S, Tessone A, Miller L, Guetta E, Zipori D, Kedes LH, Kloner RA, Leor J (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 108:863–868. doi:10.1161/01.CIR.0000084828.50310.6A

    Article  PubMed  Google Scholar 

  10. Bian F, Qi H, Ma P, Zhang L, Yoon KC, Pflugfelder SC, Li DQ (2010) An immunoprotective privilege of corneal epithelial stem cells against TH17 inflammatory stress by producing glial cell-derived neurotrophic factor. Stem Cells. doi:10.1002/stem.539

  11. Bishopric NH (2008) Mesenchymal stem cell-derived IL-10 and recovery from infarction: a third pitch for the chord. Circ Res 103:125–127. doi:10.1161/CIRCRESAHA.108.180596

    Article  PubMed  CAS  Google Scholar 

  12. Burchfield JS, Iwasaki M, Koyanagi M, Urbich C, Rosenthal N, Zeiher AM, Dimmeler S (2008) Interleukin-10 from transplanted bone marrow mononuclear cells contributes to cardiac protection after myocardial infarction. Circ Res 103:203–211. doi:10.1161/CIRCRESAHA.108.178475

    Article  PubMed  CAS  Google Scholar 

  13. Cannon CP, Gibson CM, Lambrew CT, Shoultz DA, Levy D, French WJ, Gore JM, Weaver WD, Rogers WJ, Tiefenbrunn AJ (2000) Relationship of symptom-onset-to-balloon time and door-to-balloon time with mortality in patients undergoing angioplasty for acute myocardial infarction. JAMA 283:2941–2947. doi:10.1001/jama.283.22.2941

    Article  PubMed  CAS  Google Scholar 

  14. Chien KR (2004) Stem cells: lost in translation. Nature 428:607–608. doi:10.1038/nature02500

    Article  PubMed  CAS  Google Scholar 

  15. Corallini F, Secchiero P, Beltrami AP, Cesselli D, Puppato E, Ferrari R, Beltrami CA, Zauli G (2010) TNF-alpha modulates the migratory response of mesenchymal stem cells to TRAIL. Cell Mol Life Sci 67:1307–1314. doi:10.1007/s00018-009-0246-5

    Article  PubMed  CAS  Google Scholar 

  16. Corcione A, Ottonello L, Tortolina G, Facchetti P, Airoldi I, Guglielmino R, Dadati P, Truini M, Sozzani S, Dallegri F, Pistoia V (2000) Stromal cell-derived factor-1 as a chemoattractant for follicular center lymphoma B cells. J Natl Cancer Inst 92:628–635

    Article  PubMed  CAS  Google Scholar 

  17. Degousee N, Fazel S, Angoulvant D, Stefanski E, Pawelzik SC, Korotkova M, Arab S, Liu P, Lindsay TF, Zhuo S, Butany J, Li RK, Audoly L, Schmidt R, Angioni C, Geisslinger G, Jakobsson PJ, Rubin BB (2008) Microsomal prostaglandin E2 synthase-1 deletion leads to adverse left ventricular remodeling after myocardial infarction. Circulation 117:1701–1710. doi:10.1161/CIRCULATIONAHA.107.749739

    Article  PubMed  CAS  Google Scholar 

  18. Duilio C, Ambrosio G, Kuppusamy P, DiPaula A, Becker LC, Zweier JL (2001) Neutrophils are primary source of O2 radicals during reperfusion after prolonged myocardial ischemia. Am J Physiol Heart Circ Physiol 280:H2649–H2657

    PubMed  CAS  Google Scholar 

  19. Engler RL, Dahlgren MD, Peterson MA, Dobbs A, Schmid-Schonbein GW (1986) Accumulation of polymorphonuclear leukocytes during 3-h experimental myocardial ischemia. Am J Physiol 251:H93–H100

    PubMed  CAS  Google Scholar 

  20. Erbs S, Linke A, Schachinger V, Assmus B, Thiele H, Diederich KW, Hoffmann C, Dimmeler S, Tonn T, Hambrecht R, Zeiher AM, Schuler G (2007) Restoration of microvascular function in the infarct-related artery by intracoronary transplantation of bone marrow progenitor cells in patients with acute myocardial infarction: the Doppler Substudy of the Reinfusion of Enriched Progenitor Cells and Infarct Remodeling in Acute Myocardial Infarction (REPAIR-AMI) trial. Circulation 116:366–374. doi:10.1161/CIRCULATIONAHA.106.671545

    Article  PubMed  Google Scholar 

  21. Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI (2001) The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169:12–20

    Article  PubMed  CAS  Google Scholar 

  22. Gao X, Zhang H, Belmadani S, Wu J, Xu X, Elford H, Potter BJ, Zhang C (2008) Role of TNF-alpha-induced reactive oxygen species in endothelial dysfunction during reperfusion injury. Am J Physiol Heart Circ Physiol 295:H2242–H2249. doi:10.1152/ajpheart.00587.2008

    Article  PubMed  CAS  Google Scholar 

  23. Goukassian DA, Qin G, Dolan C, Murayama T, Silver M, Curry C, Eaton E, Luedemann C, Ma H, Asahara T, Zak V, Mehta S, Burg A, Thorne T, Kishore R, Losordo DW (2007) Tumor necrosis factor-alpha receptor p75 is required in ischemia-induced neovascularization. Circulation 115:752–762. doi:10.1161/CIRCULATIONAHA.106.647255

    Article  PubMed  CAS  Google Scholar 

  24. Grieve SM, Bhindi R, Seow J, Doyle A, Turner AJ, Tomka J, Lay W, Gill A, Hunyor SN, Figtree GA (2010) Microvascular obstruction by intracoronary delivery of mesenchymal stem cells and quantification of resulting myocardial infarction by cardiac magnetic resonance. Circ Heart Fail 3:e5–e6. doi:10.1161/CIRCHEARTFAILURE.109.931360

    Article  PubMed  Google Scholar 

  25. Grundmann F, Scheid C, Braun D, Zobel C, Reuter H, Schwinger RH, Muller-Ehmsen J (2007) Differential increase of CD34, KDR/CD34, CD133/CD34 and CD117/CD34 positive cells in peripheral blood of patients with acute myocardial infarction. Clin Res Cardiol 96:621–627. doi:10.1007/s00392-007-0543-7

    Article  PubMed  CAS  Google Scholar 

  26. Hawkins HK, Entman ML, Zhu JY, Youker KA, Berens K, Dore M, Smith CW (1996) Acute inflammatory reaction after myocardial ischemic injury and reperfusion. Development and use of a neutrophil-specific antibody. Am J Pathol 148:1957–1969

    PubMed  CAS  Google Scholar 

  27. Hishikari K, Suzuki J, Ogawa M, Isobe K, Takahashi T, Onishi M, Takayama K, Isobe M (2009) Pharmacological activation of the prostaglandin E2 receptor EP4 improves cardiac function after myocardial ischaemia/reperfusion injury. Cardiovasc Res 81:123–132. doi:10.1093/cvr/cvn254

    Article  PubMed  CAS  Google Scholar 

  28. Hruban RH, Long PP, Perlman EJ, Hutchins GM, Baumgartner WA, Baughman KL, Griffin CA (1993) Fluorescence in situ hybridization for the Y-chromosome can be used to detect cells of recipient origin in allografted hearts following cardiac transplantation. Am J Pathol 142:975–980

    PubMed  CAS  Google Scholar 

  29. Iop L, Chiavegato A, Callegari A, Bollini S, Piccoli M, Pozzobon M, Rossi CA, Calamelli S, Chiavegato D, Gerosa G, De Coppi P, Sartore S (2008) Different cardiovascular potential of adult- and fetal-type mesenchymal stem cells in a rat model of heart cryoinjury. Cell Transplant 17:679–694. doi:10.3727/096368908786092739

    Article  PubMed  Google Scholar 

  30. Kantele JM, Kurk S, Jutila MA (2000) Effects of continuous exposure to stromal cell-derived factor-1 alpha on T cell rolling and tight adhesion to monolayers of activated endothelial cells. J Immunol 164:5035–5040

    PubMed  CAS  Google Scholar 

  31. Kelly ML, Wang M, Crisostomo PR, Abarbanell AM, Herrmann JL, Weil BR, Meldrum DR (2010) TNF receptor 2, NOT tnf receptor 1, enhances mesenchymal stem cell-mediated cardiac protection following acute ischemia. Shock 33:602–607. doi:10.1097/SHK.0b013e3181cc0913

    PubMed  CAS  Google Scholar 

  32. Kim YS, Park HJ, Hong MH, Kang PM, Morgan JP, Jeong MH, Cho JG, Park JC, Ahn Y (2009) TNF-alpha enhances engraftment of mesenchymal stem cells into infarcted myocardium. Front Biosci 14:2845–2856

    Article  PubMed  CAS  Google Scholar 

  33. Kleinbongard P, Bose D, Baars T, Mohlenkamp S, Konorza T, Schoner S, Elter-Schulz M, Eggebrecht H, Degen H, Haude M, Levkau B, Schulz R, Erbel R, Heusch G (2011) Vasoconstrictor potential of coronary aspirate from patients undergoing stenting of saphenous vein aortocoronary bypass grafts and its pharmacological attenuation. Circ Res 108:344–352. doi:10.1161/CIRCRESAHA.110.235713

    Article  PubMed  CAS  Google Scholar 

  34. Kleinbongard P, Heusch G, Schulz R (2010) TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther 127:295–314. doi:10.1016/j.pharmthera.2010.05.002

    Article  PubMed  CAS  Google Scholar 

  35. Kucia M, Jankowski K, Reca R, Wysoczynski M, Bandura L, Allendorf DJ, Zhang J, Ratajczak J, Ratajczak MZ (2004) CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol 35:233–245

    Article  PubMed  CAS  Google Scholar 

  36. Laflamme MA, Myerson D, Saffitz JE, Murry CE (2002) Evidence for cardiomyocyte repopulation by extra cardiac progenitors in transplanted human hearts. Circ Res 90:634–640. doi:10.1161/01.RES.0000014822.62629.EB

    Article  PubMed  CAS  Google Scholar 

  37. Lee SH, Jang AS, Kim YE, Cha JY, Kim TH, Jung S, Park SK, Lee YK, Won JH, Kim YH, Park CS (2010) Modulation of cytokine and nitric oxide by mesenchymal stem cell transfer in lung injury/fibrosis. Respir Res 11:16. doi:10.1186/1465-9921-11-16

    Article  PubMed  Google Scholar 

  38. Leri A, Kajstura J, Anversa P (2005) Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev 85:1373–1416. doi:10.1152/physrev.00013.2005

    Article  PubMed  CAS  Google Scholar 

  39. Li D, Zhao L, Liu M, Du X, Ding W, Zhang J, Mehta JL (1999) Kinetics of tumor necrosis factor alpha in plasma and the cardioprotective effect of a monoclonal antibody to tumor necrosis factor alpha in acute myocardial infarction. Am Heart J 137:1145–1152

    Article  PubMed  CAS  Google Scholar 

  40. Li SC, Wang L, Jiang H, Acevedo J, Chang AC, Loudon WG (2009) Stem cell engineering for treatment of heart diseases: potentials and challenges. Cell Biol Int 33:255–267. doi:10.1016/j.cellbi.2008.11.009

    Article  PubMed  CAS  Google Scholar 

  41. Li Z, Wu JC, Sheikh AY, Kraft D, Cao F, Xie X, Patel M, Gambhir SS, Robbins RC, Cooke JP (2007) Differentiation, survival, and function of embryonic stem cell derived endothelial cells for ischemic heart disease. Circulation 116:I46–I54. doi:10.1161/CIRCULATIONAHA.106.680561

    PubMed  Google Scholar 

  42. Lin TJ, Issekutz TB, Marshall JS (2000) Human mast cells transmigrate through human umbilical vein endothelial monolayers and selectively produce IL-8 in response to stromal cell-derived factor-1 alpha. J Immunol 165:211–220

    PubMed  CAS  Google Scholar 

  43. Madonna R, Rokosh G, De Caterina R, Bolli R (2010) Hepatocyte growth factor/Met gene transfer in cardiac stem cells—potential for cardiac repair. Basic Res Cardiol 105:443–452. doi:10.1007/s00395-010-0102-7

    Article  PubMed  CAS  Google Scholar 

  44. Maggini J, Mirkin G, Bognanni I, Holmberg J, Piazzon IM, Nepomnaschy I, Costa H, Canones C, Raiden S, Vermeulen M, Geffner JR (2010) Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One 5:e9252. doi:10.1371/journal.pone.0009252

    Article  PubMed  Google Scholar 

  45. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Hata J, Umezawa A, Ogawa S (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103:697–705. doi:10.1172/JCI5298

    Article  PubMed  CAS  Google Scholar 

  46. Malek S, Kaplan E, Wang JF, Ke Q, Rana JS, Chen Y, Rahim BG, Li M, Huang Q, Xiao YF, Verheugt FW, Morgan JP, Min JY (2006) Successful implantation of intravenously administered stem cells correlates with severity of inflammation in murine myocarditis. Pflugers Arch 452:268–275. doi:10.1007/s00424-005-0035-4

    Article  PubMed  CAS  Google Scholar 

  47. Massa M, Rosti V, Ferrario M, Campanelli R, Ramajoli I, Rosso R, De Ferrari GM, Ferlini M, Goffredo L, Bertoletti A, Klersy C, Pecci A, Moratti R, Tavazzi L (2005) Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood 105:199–206. doi:10.1182/blood-2004-05-1831

    Article  PubMed  CAS  Google Scholar 

  48. Mazhari R, Hare JM (2007) Advances in cell-based therapy for structural heart disease. Prog Cardiovasc Dis 49:387–395. doi:10.1016/j.pcad.2007.03.004

    Article  PubMed  Google Scholar 

  49. Mei SH, Haitsma JJ, Dos Santos CC, Deng Y, Lai PF, Slutsky AS, Liles WC, Stewart DJ (2010) Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med 182:1047–1057. doi:10.1164/rccm.201001-0010OC

    Article  PubMed  CAS  Google Scholar 

  50. Müller P, Pfeiffer P, Koglin J, Schäfers HJ, Seeland U, Janzen I, Urbschat S, Böhm M (2002) Cardiomyocytes of noncardiac origin in myocardial biopsies of human transplanted hearts. Circulation 106:31–35. doi:10.1161/01.CIR.0000022405.68464.CA

    Article  PubMed  Google Scholar 

  51. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668. doi:10.1038/nature02446

    Article  PubMed  CAS  Google Scholar 

  52. Nagase H, Miyamasu M, Yamaguchi M, Fujisawa T, Kawasaki H, Ohta K, Yamamoto K, Morita Y, Hirai K (2001) Regulation of chemokine receptor expression in eosinophils. Int Arch Allergy Immunol 125(Suppl 1):29–32

    Article  PubMed  CAS  Google Scholar 

  53. Nervi B, Link DC, DiPersio JF (2006) Cytokines and hematopoietic stem cell mobilization. J Cell Biochem 99:690–705. doi:10.1002/jcb.21043

    Article  PubMed  CAS  Google Scholar 

  54. Oerlemans MI, Goumans MJ, van Middelaar B, Clevers H, Doevendans PA, Sluijter JP (2010) Active Wnt signaling in response to cardiac injury. Basic Res Cardiol 105:631–641. doi:10.1007/s00395-010-0100-9

    Article  PubMed  CAS  Google Scholar 

  55. Orlandi A, Chavakis E, Seeger F, Tjwa M, Zeiher AM, Dimmeler S (2010) Long-term diabetes impairs repopulation of hematopoietic progenitor cells and dysregulates the cytokine expression in the bone marrow microenvironment in mice. Basic Res Cardiol 105:703–712. doi:10.1007/s00395-010-0109-0

    Article  PubMed  CAS  Google Scholar 

  56. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705. doi:10.1038/35070587

    Article  PubMed  CAS  Google Scholar 

  57. Penn MS (2009) Importance of the SDF-1:CXCR4 axis in myocardial repair. Circ Res 104:1133–1135. doi:10.1161/CIRCRESAHA.109.198929

    Article  PubMed  CAS  Google Scholar 

  58. Penn MS (2010) SDF-1:CXCR4 axis is fundamental for tissue preservation and repair. Am J Pathol 177:2166–2168. doi:10.2353/ajpath.2010.100803

    Article  PubMed  CAS  Google Scholar 

  59. Popescu LM, Gherghiceanu M, Manole CG, Faussone-Pellegrini MS (2009) Cardiac renewing: interstitial cajal-like cells nurse cardiomyocyte progenitors in epicardial stem cell niches. J Cell Mol Med 13:866–886. doi:10.1111/j.1582-4934.2009.00758.x

    Article  PubMed  CAS  Google Scholar 

  60. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74. doi:10.1126/science.276.5309.71

    Article  PubMed  CAS  Google Scholar 

  61. Qian JY, Harding P, Liu Y, Shesely E, Yang XP, LaPointe MC (2008) Reduced cardiac remodeling and function in cardiac-specific EP4 receptor knockout mice with myocardial infarction. Hypertension 51:560–566. doi:10.1161/HYPERTENSIONAHA.107.102590

    Article  PubMed  CAS  Google Scholar 

  62. Quaini F, Urbanek K, Beltrami AP, Finato N, Beltrami CA, Nadal-Ginard B, Kajstura J, Leri A, Anversa P (2002) Chimerism of the transplanted heart. N Engl J Med 346:5–15. doi:10.1056/NEJMoa012081

    Article  PubMed  Google Scholar 

  63. Radl J, Croese JW, Zurcher C, Van den Enden-Vieveen MH, de Leeuw AM (1988) Animal model of human disease. Multiple myeloma. Am J Pathol 132:593–597

    PubMed  CAS  Google Scholar 

  64. Radl J, Hollander CF, van den Berg P, de Glopper E (1978) Idiopathic paraproteinaemia I. Studies in an animal model—the ageing C57BL/KaLwRij mouse. Clin Exp Immunol 33:395–402

    PubMed  CAS  Google Scholar 

  65. Ren G, Dewald O, Frangogiannis NG (2003) Inflammatory mechanisms in myocardial infarction. Curr Drug Targets Inflamm Allergy 2:242–256

    Article  PubMed  CAS  Google Scholar 

  66. Salem HK, Thiemermann C (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28:585–596. doi:10.1002/stem.269

    PubMed  CAS  Google Scholar 

  67. Sanchez A, Garcia-Sancho J (2007) Cardiac repair by stem cells. Cell Death Differ 14:1258–1261. doi:10.1038/sj.cdd.4402146

    Article  PubMed  CAS  Google Scholar 

  68. Sandstedt J, Jonsson M, Lindahl A, Jeppsson A, Asp J (2010) C-kit+ CD45- cells found in the adult human heart represent a population of endothelial progenitor cells. Basic Res Cardiol 105:545–556. doi:10.1007/s00395-010-0088-1

    Article  PubMed  Google Scholar 

  69. Schulz R, Heusch G (2011) C-reactive protein: just a biomarker of inflammation or a pathophysiological player in myocardial function and morphology? Hypertension 57:151–153. doi:10.1161/HYPERTENSIONAHA.110.165837

    Article  PubMed  CAS  Google Scholar 

  70. Soonpaa MH, Field LJ (1997) Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. Am J Physiol 272:H220–H226

    PubMed  CAS  Google Scholar 

  71. Sozzani S, Luini W, Borsatti A, Polentarutti N, Zhou D, Piemonti L, D’Amico G, Power CA, Wells TN, Gobbi M, Allavena P, Mantovani A (1997) Receptor expression and responsiveness of human dendritic cells to a defined set of CC and CXC chemokines. J Immunol 159:1993–2000

    PubMed  CAS  Google Scholar 

  72. Spaggiari GM, Abdelrazik H, Becchetti F, Moretta L (2009) MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood 113:6576–6583. doi:10.1182/blood-2009-02-203943

    Article  PubMed  CAS  Google Scholar 

  73. Suzuki K, Murtuza B, Beauchamp JR, Smolenski RT, Varela-Carver A, Fukushima S, Coppen SR, Partridge TA, Yacoub MH (2004) Dynamics and mediators of acute graft attrition after myoblast transplantation to the heart. FASEB J 18:1153–1155. doi:10.1096/fj.03-1308fje

    PubMed  CAS  Google Scholar 

  74. Tan J, Weil BR, Abarbanell AM, Wang Y, Herrmann JL, Dake ML, Meldrum DR (2010) Ablation of TNF-alpha receptors influences mesenchymal stem cell-mediated cardiac protection against ischemia. Shock 34:236–242. doi:10.1097/SHK.0b013e3181d75ae3

    Article  PubMed  CAS  Google Scholar 

  75. Teng CJ, Luo J, Chiu RC, Shum-Tim D (2006) Massive mechanical loss of microspheres with direct intramyocardial injection in the beating heart: implications for cellular cardiomyoplasty. J Thorac Cardiovasc Surg 132:628–632. doi:10.1016/j.jtcvs.2006.05.034

    Article  PubMed  Google Scholar 

  76. Toma C, Wagner WR, Bowry S, Schwartz A, Villanueva F (2009) Fate of culture-expanded mesenchymal stem cells in the microvasculature: in vivo observations of cell kinetics. Circ Res 104:398–402. doi:10.1161/CIRCRESAHA.108.187724

    Article  PubMed  CAS  Google Scholar 

  77. Turan RG, Brehm M, Koestering M, Tobias Z, Bartsch T, Steiner S, Picard F, Ebner P, Schannwell CM, Strauer BE (2007) Factors influencing spontaneous mobilization of CD34+ and CD133+ progenitor cells after myocardial infarction. Eur J Clin Invest 37:842–851. doi:10.1111/j.1365-2362.2007.01876.x

    Article  PubMed  CAS  Google Scholar 

  78. Van Craenenbroeck EM, Hoymans VY, Beckers PJ, Possemiers NM, Wuyts K, Paelinck BP, Vrints CJ, Conraads VM (2010) Exercise training improves function of circulating angiogenic cells in patients with chronic heart failure. Basic Res Cardiol 105:665–676. doi:10.1007/s00395-010-0105-4

    Article  PubMed  Google Scholar 

  79. van den Borne SW, van de Schans VA, Strzelecka AE, Vervoort-Peters HT, Lijnen PM, Cleutjens JP, Smits JF, Daemen MJ, Janssen BJ, Blankesteijn WM (2009) Mouse strain determines the outcome of wound healing after myocardial infarction. Cardiovasc Res 84:273–282. doi:10.1093/cvr/cvp207

    Article  PubMed  Google Scholar 

  80. Vinten-Johansen J, Jiang R, Reeves JG, Mykytenko J, Deneve J, Jobe LJ (2007) Inflammation, proinflammatory mediators and myocardial ischemia–reperfusion Injury. Hematol Oncol Clin North Am 21:123–145. doi:10.1016/j.hoc.2006.11.010

    Article  PubMed  Google Scholar 

  81. Vulliet PR, Greeley M, Halloran SM, MacDonald KA, Kittleson MD (2004) Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet 363:783–784. doi:10.1016/S0140-6736(04)15695-X

    Article  PubMed  Google Scholar 

  82. Wang D, Chen K, Du WT, Han ZB, Ren H, Chi Y, Yang SG, Bayard F, Zhu D, Han ZC (2010) CD14+ monocytes promote the immunosuppressive effect of human umbilical cord matrix stem cells. Exp Cell Res 316:2414–2423. doi:10.1016/j.yexcr.2010.04.018

    Article  PubMed  CAS  Google Scholar 

  83. Wei HM, Wong P, Hsu LF, Shim W (2009) Human bone marrow-derived adult stem cells for post-myocardial infarction cardiac repair: current status and future directions. Singapore Med J 50:935–942

    PubMed  CAS  Google Scholar 

  84. Weil BR, Manukyan MC, Herrmann JL, Wang Y, Abarbanell AM, Poynter JA, Meldrum DR (2010) Mesenchymal stem cells attenuate myocardial functional depression and reduce systemic and myocardial inflammation during endotoxemia. Surgery 148:444–452. doi:10.1016/j.surg.2010.03.010

    Article  PubMed  Google Scholar 

  85. Wojakowski W, Tendera M, Michalowska A, Majka M, Kucia M, Maslankiewicz K, Wyderka R, Ochala A, Ratajczak MZ (2004) Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation 110:3213–3220. doi:10.1161/01.CIR.0000147609.39780.02

    Article  PubMed  CAS  Google Scholar 

  86. Worthen GS, Schwab B 3rd, Elson EL, Downey GP (1989) Mechanics of stimulated neutrophils: cell stiffening induces retention in capillaries. Science 245:183–186. doi:10.1126/science.2749255

    Article  PubMed  CAS  Google Scholar 

  87. Yoon CH, Koyanagi M, Iekushi K, Seeger F, Urbich C, Zeiher AM, Dimmeler S (2010) Mechanism of improved cardiac function after bone marrow mononuclear cell therapy: role of cardiovascular lineage commitment. Circulation 121:2001–2011. doi:10.1161/CIRCULATIONAHA.109.909291

    Article  PubMed  Google Scholar 

  88. Zaruba MM, Franz WM (2010) Role of the SDF-1-CXCR4 axis in stem cell-based therapies for ischemic cardiomyopathy. Expert Opin Biol Ther 10:321–335. doi:10.1517/14712590903460286

    Article  PubMed  CAS  Google Scholar 

  89. Zhang C, Wu J, Xu X, Potter BJ, Gao X (2010) Direct relationship between levels of TNF-alpha expression and endothelial dysfunction in reperfusion injury. Basic Res Cardiol 105:453–464. doi:10.1007/s00395-010-0083-6

    Article  PubMed  CAS  Google Scholar 

  90. Zhang CC, Lodish HF (2008) Cytokines regulating hematopoietic stem cell function. Curr Opin Hematol 15:307–311. doi:10.1097/MOH.0b013e3283007db5

    Article  PubMed  CAS  Google Scholar 

  91. Zhang QZ, Su WR, Shi SH, Wilder-Smith P, Xiang AP, Wong A, Nguyen AL, Kwon B, Le AD (2010) Human gingiva-derived mesenchymal stem cells elicit polarization of M2 macrophages and enhance cutaneous wound healing. Stem Cells. doi:10.1002/stem.503

  92. Zhao ZQ, Nakamura M, Wang NP, Velez DA, Hewan-Lowe KO, Guyton RA, Vinten-Johansen J (2000) Dynamic progression of contractile and endothelial dysfunction and infarct extension in the late phase of reperfusion. J Surg Res 94:133–144. doi:10.1006/jsre.2000.6029

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuihua Zhang.

Additional information

Junxi Wu and Jun Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Li, J., Zhang, N. et al. Stem cell-based therapies in ischemic heart diseases: a focus on aspects of microcirculation and inflammation. Basic Res Cardiol 106, 317–324 (2011). https://doi.org/10.1007/s00395-011-0168-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-011-0168-x

Keywords

Navigation