Skip to main content

Stem Cells Therapy for Ischemic Heart Disease

  • Chapter
  • First Online:
Ischemic Heart Disease
  • 825 Accesses

Abstract

Despite major advances in the management of ischemic heart disease, it remains a leading cause of morbidity and mortality worldwide. To overcome this epidemiological issue, among different treatment options, there has been interest in applying cellular therapy to reduce the acute injury secondary to acute myocardial infarction and to restore cardiac function in chronic ischemic heart disease. Preclinical cell-based therapy has proved to be effective and has yielded encouraging results, which involve preventing or reducing myocardial cell death, inhibiting scar formation, promoting angiogenesis, and improving cardiac function. However, clinical studies have not yet achieved a desired outcome, with several clinical trials showing paradoxical results in terms of cardiac function and remodeling. With this chapter, we aimed to present current preclinical and clinical evidence with stem cells use in the treatment of acute and chronic ischemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Timmis A, Townsend N, Gale CP, Torbica A, Lettino M, Petersen SE, et al.; European Society of Cardiology. European Society of Cardiology: cardiovascular disease statistics 2019. Eur Heart J. 2020;41(1):12–85. https://doi.org/10.1093/eurheartj/ehz859. Erratum in: Eur Heart J. 2020;41(47):4507. PMID: 31820000.

  2. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al.; GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: update from the GBD 2019 Study. J Am Coll Cardiol. 2020;76(25):2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010. Erratum in: J Am Coll Cardiol. 2021;77(15):1958–9. PMID: 33309175; PMCID: PMC7755038.

  3. Echouffo-Tcheugui JB, Bishu KG, Fonarow GC, Egede LE. Trends in health care expenditure among US adults with heart failure: the Medical Expenditure Panel Survey 2002–2011. Am Heart J. 2017;186:63–72. https://doi.org/10.1016/j.ahj.2017.01.003. Epub 2017 Jan 13. PMID: 28454834; PMCID: PMC5439297

    Article  PubMed  PubMed Central  Google Scholar 

  4. Suzuki K, Smolenski RT, Jayakumar J, Murtuza B, Brand NJ, Yacoub MH. Heat shock treatment enhances graft cell survival in skeletal myoblast transplantation to the heart. Circulation. 2000;102(19 Suppl 3):III216–21. https://doi.org/10.1161/01.cir.102.suppl_3.iii-216. PMID: 11082390

    Article  CAS  PubMed  Google Scholar 

  5. Kobayashi T, Hamano K, Li TS, Katoh T, Kobayashi S, Matsuzaki M, et al. Enhancement of angiogenesis by the implantation of self bone marrow cells in a rat ischemic heart model. J Surg Res. 2000;89(2):189–95. https://doi.org/10.1006/jsre.2000.5828. PMID: 10729249

    Article  CAS  PubMed  Google Scholar 

  6. Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Tsutsumi Y, Ozono R, et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation. 2001;104(9):1046–52. https://doi.org/10.1161/hc3501.093817. PMID: 11524400

    Article  CAS  PubMed  Google Scholar 

  7. Alestalo K, Korpi R, Mäkelä J, Lehtonen S, Mäkelä T, Yannopoulos F, et al. High number of transplanted stem cells improves myocardial recovery after AMI in a porcine model. Scand Cardiovasc J. 2015;49(2):82–94. https://doi.org/10.3109/14017431.2015.1018311. Epub 2015 Mar 18. PMID: 25705991

    Article  CAS  PubMed  Google Scholar 

  8. Fuchs S, Baffour R, Zhou YF, Shou M, Pierre A, Tio FO, et al. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol. 2001;37(6):1726–32. https://doi.org/10.1016/s0735-1097(01)01200-1. PMID: 11345391

    Article  CAS  PubMed  Google Scholar 

  9. Waksman R, Fournadjiev J, Baffour R, Pakala R, Hellinga D, Leborgne L, et al. Transepicardial autologous bone marrow-derived mononuclear cell therapy in a porcine model of chronically infarcted myocardium. Cardiovasc Radiat Med. 2004;5(3):125–31. https://doi.org/10.1016/j.carrad.2004.10.001. PMID: 15721847

    Article  PubMed  Google Scholar 

  10. Mathieu M, Bartunek J, El Oumeiri B, Touihri K, Hadad I, Thoma P, et al. Cell therapy with autologous bone marrow mononuclear stem cells is associated with superior cardiac recovery compared with use of nonmodified mesenchymal stem cells in a canine model of chronic myocardial infarction. J Thorac Cardiovasc Surg. 2009;138(3):646–53. https://doi.org/10.1016/j.jtcvs.2008.12.031. Epub 2009 Feb 13. PMID: 19698851

    Article  PubMed  Google Scholar 

  11. Schächinger V, Erbs S, Elsässer A, Haberbosch W, Hambrecht R, Hölschermann H, et al.; REPAIR-AMI Investigators. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J. 2006;27(23):2775–83. https://doi.org/10.1093/eurheartj/ehl388. Epub 2006 Nov 10. PMID: 17098754.

  12. Assmus B, Leistner DM, Schächinger V, Erbs S, Elsässer A, Haberbosch W, et al.; REPAIR-AMI Study Group. Long-term clinical outcome after intracoronary application of bone marrow-derived mononuclear cells for acute myocardial infarction: migratory capacity of administered cells determines event-free survival. Eur Heart J. 2014;35(19):1275–83. https://doi.org/10.1093/eurheartj/ehu062. Epub 2014 Feb 25. PMID: 24569031.

  13. Traverse JH, Henry TD, Pepine CJ, Willerson JT, Zhao DX, Ellis SG, et al.; Cardiovascular Cell Therapy Research Network (CCTRN). Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. JAMA. 2012;308(22):2380–9. https://doi.org/10.1001/jama.2012.28726. Erratum in: JAMA. 2013;309(4):343. Erratum in: JAMA. 2015;314(1):86. PMID: 23129008; PMCID: PMC3652242.

  14. Traverse JH, Henry TD, Ellis SG, Pepine CJ, Willerson JT, Zhao DX, et al.; Cardiovascular Cell Therapy Research Network. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA. 2011;306(19):2110–9. https://doi.org/10.1001/jama.2011.1670. Epub 2011 Nov 14. PMID: 22084195; PMCID: PMC3600981.

  15. Sürder D, Manka R, Moccetti T, Lo Cicero V, Emmert MY, Klersy C, et al. Effect of bone marrow-derived mononuclear cell treatment, early or late after acute myocardial infarction: twelve months CMR and long-term clinical results. Circ Res. 2016;119(3):481–90. https://doi.org/10.1161/CIRCRESAHA.116.308639. Epub 2016 Jun 6. PMID: 27267068

    Article  CAS  PubMed  Google Scholar 

  16. Wollert KC, Meyer GP, Müller-Ehmsen J, Tschöpe C, Bonarjee V, Larsen AI, et al. Intracoronary autologous bone marrow cell transfer after myocardial infarction: the BOOST-2 randomised placebo-controlled clinical trial. Eur Heart J. 2017;38(39):2936–43. https://doi.org/10.1093/eurheartj/ehx188. PMID: 28431003

    Article  CAS  PubMed  Google Scholar 

  17. Nicolau JC, Furtado RHM, Silva SA, Rochitte CE, Rassi A Jr, Moraes JBMC Jr, et al.; MiHeart/AMI Investigators. Stem-cell therapy in ST-segment elevation myocardial infarction with reduced ejection fraction: a multicenter, double-blind randomized trial. Clin Cardiol. 2018;41(3):392–9. https://doi.org/10.1002/clc.22882. Epub 2018 Mar 22. PMID: 29569254; PMCID: PMC6489870.

  18. Xiao C, Zhou S, Liu Y, Hu H. Efficacy and safety of bone marrow cell transplantation for chronic ischemic heart disease: a meta-analysis. Med Sci Monit. 2014;20:1768–77. https://doi.org/10.12659/MSM.892047. PMID: 25270584; PMCID: PMC4199404

    Article  PubMed  PubMed Central  Google Scholar 

  19. Garikapati K, Hassan S, Singhvi A, Dania K, Qureshi W. Outcomes of patients with left ventricular diastolic dysfunction in adult hematopoietic stem cell transplantation. Circ Cardiovasc Qual. 2013;6:A72.

    Google Scholar 

  20. Babin-Ebell J, Sievers HH, Charitos EI, Klein HM, Jung F, Hellberg AK, et al. Transmyocardial laser revascularization combined with intramyocardial endothelial progenitor cell transplantation in patients with intractable ischemic heart disease ineligible for conventional revascularization: preliminary results in a highly selected small patient cohort. Thorac Cardiovasc Surg. 2010;58(1):11–6. https://doi.org/10.1055/s-0029-1186199. Epub 2010 Jan 13. PMID: 20072970

    Article  CAS  PubMed  Google Scholar 

  21. Menasché P, Vanneaux V, Hagège A, Bel A, Cholley B, Cacciapuoti I, et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J. 2015;36(30):2011–7. https://doi.org/10.1093/eurheartj/ehv189. Epub 2015 May 19. PMID: 25990469

    Article  PubMed  Google Scholar 

  22. Lian Q, Zhang Y, Zhang J, Zhang HK, Wu X, Zhang Y, et al. Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation. 2010;121(9):1113–23. https://doi.org/10.1161/CIRCULATIONAHA.109.898312. Epub 2010 Feb 22. PMID: 20176987

    Article  PubMed  Google Scholar 

  23. Jung Y, Bauer G, Nolta JA. Concise review: induced pluripotent stem cell-derived mesenchymal stem cells: progress toward safe clinical products. Stem Cells. 2012;30(1):42–7. https://doi.org/10.1002/stem.727. PMID: 21898694; PMCID: PMC3784250

    Article  CAS  PubMed  Google Scholar 

  24. Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 2004;95(9):911–21. https://doi.org/10.1161/01.RES.0000147315.71699.51. Epub 2004 Oct 7. PMID: 15472116

    Article  CAS  PubMed  Google Scholar 

  25. Malliaras K, Makkar RR, Smith RR, et al. Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). J Am Coll Cardiol. 2014;63:110–22.

    Article  PubMed  Google Scholar 

  26. Chakravarty T, Makkar RR, Ascheim DD, et al. ALLogeneic heart STem cells to achieve myocardial regeneration (ALLSTAR) trial: rationale and design. Cell Transplant. 2017;26:205–14.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 2007;115(7):896–908. https://doi.org/10.1161/CIRCULATIONAHA.106.655209. Epub 2007 Feb 5. PMID: 17283259

    Article  CAS  PubMed  Google Scholar 

  28. Shabbir A, Zisa D, Suzuki G, Lee T. Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a noninvasive therapeutic regimen. Am J Physiol Heart Circ Physiol. 2009;296(6):H1888–97. https://doi.org/10.1152/ajpheart.00186.2009. Epub 2009 Apr 24. PMID: 19395555; PMCID: PMC2716100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vilahur G, Oñate B, Cubedo J, Béjar MT, Arderiu G, Peña E, et al. Allogenic adipose-derived stem cell therapy overcomes ischemia-induced microvessel rarefaction in the myocardium: systems biology study. Stem Cell Res Ther. 2017;8(1):52. https://doi.org/10.1186/s13287-017-0509-2. PMID: 28279225; PMCID: PMC5345145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu CB, Huang H, Sun P, Ma SZ, Liu AH, Xue J, et al. Human umbilical cord-derived mesenchymal stromal cells improve left ventricular function, perfusion, and remodeling in a porcine model of chronic myocardial ischemia. Stem Cells Transl Med. 2016;5(8):1004–13. https://doi.org/10.5966/sctm.2015-0298. Epub 2016 Jun 22. PMID: 27334487; PMCID: PMC4954453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mayourian J, Cashman TJ, Ceholski DK, Johnson BV, Sachs D, Kaji DA, et al. Experimental and computational insight into human mesenchymal stem cell paracrine signaling and heterocellular coupling effects on cardiac contractility and arrhythmogenicity. Circ Res. 2017;121(4):411–23. https://doi.org/10.1161/CIRCRESAHA.117.310796. Epub 2017 Jun 22. PMID: 28642329; PMCID: PMC5899516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hodgkinson CP, Bareja A, Gomez JA, Dzau VJ. Emerging concepts in paracrine mechanisms in regenerative cardiovascular medicine and biology. Circ Res. 2016;118(1):95–107. https://doi.org/10.1161/CIRCRESAHA.115.305373. PMID: 26837742; PMCID: PMC4874329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Karantalis V, DiFede DL, Gerstenblith G, Pham S, Symes J, Zambrano JP, et al. Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: the Prospective Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery (PROMETHEUS) trial. Circ Res. 2014;114(8):1302–10. https://doi.org/10.1161/CIRCRESAHA.114.303180. Epub 2014 Feb 24. PMID: 24565698; PMCID: PMC4104798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hare JM, Fishman JE, Gerstenblith G, DiFede Velazquez DL, Zambrano JP, et al. Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA. 2012;308(22):2369–79. https://doi.org/10.1001/jama.2012.25321. Erratum in: JAMA. 2013;310(7):750. George, Richard [added]; Lardo, Albert [added]. PMID: 23117550; PMCID: PMC4762261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bian S, Zhang L, Duan L, Wang X, Min Y, Yu H. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med (Berl). 2014;92(4):387–97. https://doi.org/10.1007/s00109-013-1110-5. Epub 2013 Dec 14. PMID: 24337504

    Article  CAS  PubMed  Google Scholar 

  36. Liu K, Ji K, Guo L, Wu W, Lu H, Shan P, et al. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia-reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc Res. 2014;92:10–8. https://doi.org/10.1016/j.mvr.2014.01.008. Epub 2014 Jan 31. PMID: 24486322

    Article  CAS  PubMed  Google Scholar 

  37. Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ, et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol. 2004;94(1):92–5. https://doi.org/10.1016/j.amjcard.2004.03.034. PMID: 15219514

    Article  PubMed  Google Scholar 

  38. Lee JW, Lee SH, Youn YJ, Ahn MS, Kim JY, Yoo BS, et al. A randomized, open-label, multicenter trial for the safety and efficacy of adult mesenchymal stem cells after acute myocardial infarction. J Korean Med Sci. 2014;29(1):23–31. https://doi.org/10.3346/jkms.2014.29.1.23. Epub 2013 Dec 26. PMID: 24431901; PMCID: PMC3890472

    Article  PubMed  Google Scholar 

  39. Cogle CR, Wise E, Meacham AM, Zierold C, Traverse JH, Henry TD, et al.; Cardiovascular Cell Therapy Research Network (CCTRN). Detailed analysis of bone marrow from patients with ischemic heart disease and left ventricular dysfunction: BM CD34, CD11b, and clonogenic capacity as biomarkers for clinical outcomes. Circ Res. 2014;115(10):867–74. https://doi.org/10.1161/CIRCRESAHA.115.304353. Epub 2014 Aug 18. PMID: 25136078; PMCID: PMC4358751.

  40. Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54(24):2277–86. https://doi.org/10.1016/j.jacc.2009.06.055. PMID: 19958962; PMCID: PMC3580848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Williams AR, Trachtenberg B, Velazquez DL, McNiece I, Altman P, Rouy D, et al. Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circ Res. 2011;108(7):792–6. https://doi.org/10.1161/CIRCRESAHA.111.242610. Epub 2011 Mar 17. PMID: 21415390; PMCID: PMC3390160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mathiasen AB, Qayyum AA, Jørgensen E, Helqvist S, Fischer-Nielsen A, Kofoed KF, et al. Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: a randomized placebo-controlled trial (MSC-HF trial). Eur Heart J. 2015;36(27):1744–53. https://doi.org/10.1093/eurheartj/ehv136. Epub 2015 Apr 29. PMID: 25926562

    Article  CAS  PubMed  Google Scholar 

  43. Guijarro D, Lebrin M, Lairez O, Bourin P, Piriou N, Pozzo J, et al. Intramyocardial transplantation of mesenchymal stromal cells for chronic myocardial ischemia and impaired left ventricular function: results of the MESAMI 1 pilot trial. Int J Cardiol. 2016;209:258–65. https://doi.org/10.1016/j.ijcard.2016.02.016. Epub 2016 Feb 2. PMID: 26901787

    Article  CAS  PubMed  Google Scholar 

  44. Diederichsen AC, Møller JE, Thayssen P, Junker AB, Videbaek L, Saekmose SG, et al. Effect of repeated intracoronary injection of bone marrow cells in patients with ischaemic heart failure the Danish stem cell study—congestive heart failure trial (DanCell-CHF). Eur J Heart Fail. 2008;10(7):661–7. https://doi.org/10.1016/j.ejheart.2008.05.010. Epub 2008 Jun 16. PMID: 18555742

    Article  PubMed  Google Scholar 

  45. Lin L, Gu S, Cheng Y, Ding L. Distribution of adult cardiac stem cells via intravenous cell transplantation in myocardial infarction mouse model. Prog Modern Biomed. 2015;15:7024–7. https://doi.org/10.13241/j.cnki.pmb.2015.36.007.

    Article  Google Scholar 

  46. Freyman T, Polin G, Osman H, Crary J, Lu M, Cheng L, et al. A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J. 2006;27(9):1114–22. https://doi.org/10.1093/eurheartj/ehi818. Epub 2006 Mar 1. PMID: 16510464

    Article  PubMed  Google Scholar 

  47. Khodayari S, Khodayari H, Amiri AZ, Eslami M, Farhud D, Hescheler J, et al. Inflammatory microenvironment of acute myocardial infarction prevents regeneration of heart with stem cells therapy. Cell Physiol Biochem. 2019;53(5):887–909. https://doi.org/10.33594/000000180. PMID: 31749350

    Article  CAS  PubMed  Google Scholar 

  48. Behfar A, Yamada S, Crespo-Diaz R, Nesbitt JJ, Rowe LA, Perez-Terzic C, et al. Guided cardiopoiesis enhances therapeutic benefit of bone marrow human mesenchymal stem cells in chronic myocardial infarction. J Am Coll Cardiol. 2010;56(9):721–34. https://doi.org/10.1016/j.jacc.2010.03.066. PMID: 20723802; PMCID: PMC2932958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bartunek J, Behfar A, Dolatabadi D, Vanderheyden M, Ostojic M, Dens J, et al. Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics. J Am Coll Cardiol. 2013;61(23):2329–38. https://doi.org/10.1016/j.jacc.2013.02.071. Epub 2013 Apr 10. Erratum in: J Am Coll Cardiol. 2013 Dec 24;62(25):2457-8. PMID: 23583246

    Article  PubMed  Google Scholar 

  50. Bolli R, Hare JM, March KL, Pepine CJ, Willerson JT, Perin EC, et al.; Cardiovascular Cell Therapy Research Network (CCTRN). Rationale and design of the CONCERT-HF Trial (Combination of Mesenchymal and c-kit+ Cardiac Stem Cells As Regenerative Therapy for Heart Failure). Circ Res 2018;122(12):1703–15. https://doi.org/10.1161/CIRCRESAHA.118.312978. Epub 2018 Apr 27. PMID: 29703749; PMCID: PMC5993622.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gino Gerosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pradegan, N., Gerosa, G. (2023). Stem Cells Therapy for Ischemic Heart Disease. In: Concistrè, G. (eds) Ischemic Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-25879-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25879-4_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25878-7

  • Online ISBN: 978-3-031-25879-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics