Skip to main content

Advertisement

Log in

Differential increase of CD34, KDR/CD34, CD133/CD34 and CD117/CD34 positive cells in peripheral blood of patients with acute myocardial infarction

  • ORIGINAL PAPER
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Objective

Circulating progenitor cells (CPC) may contribute to cardiac regeneration and neovascularization after acute myocardial infarction (AMI). For potential therapeutic use, understanding the endogenous mechanisms after ischemia is inevitable. We investigated the absolute number, but also the subset composition of CD34+ CPC after AMI.

Methods

CD34+, KDR+/ CD34+, CD133+/CD34+ and CD117+/CD34+ CPC were analyzed by FACS in peripheral blood of 10 patients with acute MI (59±5 yrs, m/f=8/2) at day of AMI (day 0) and days 1–5. For comparison patients with stable coronary artery disease (CAD, n=12, 66±2 yrs, m/f=10/2) and young healthy volunteers (n=7, 26±2 yrs, m/f=3/4) were studied.

Results

CD34 and KDR/CD34, CD133/CD34, CD117/CD34 were increased day 3 and 4 after AMI. KDR+ fraction within CD34+ population remained unchanged (58.3±7.8% vs 55.3±10.6%), whereas CD133+ (64.9±3.1% vs 43.5±5.9%, P=0.006) and CD117+ fractions (71.7±5.6% vs 50.1±5.5%, P=0.02) were elevated. In CAD, all CPC and fractions were similar as AMI day 0. Healthy volunteers had more CD34+ than CAD and AMI day 0. Double positive CPC were also higher, but fractions were unchanged vs CAD with more KDR/CD34 in trend (72.8±10.6% vs 50.5±5.6%, P=0.058). After AMI both absolute numbers of CD34+ and their subset composition change, suggesting selective mobilization of CPC. Increased CPC after AMI never reach numbers of young healthy volunteers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK, Goodell MA (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107(11):1395–1402

    Article  PubMed  CAS  Google Scholar 

  2. Li TS, Hamano K, Nishida M, Hayashi M, Ito H, Mikamo A, Matsuzaki M (2003) CD117+ stem cells play a key role in therapeutic angiogenesis induced by bone marrow cell implantation. Am J Physiol Heart Circ Physiol 285(3):H931–937

    PubMed  CAS  Google Scholar 

  3. Madeddu P, Emanueli C, Pelosi E, Salis MB, Cerio AM, Bonanno G, Patti M, Stassi G, Condorelli G, Peschle C (2004) Transplantation of low dose CD34+KDR+ cells promotes vascular and muscular regeneration in ischemic limbs. Faseb J 18(14):1737–1739

    PubMed  CAS  Google Scholar 

  4. Massa M, Rosti V, Ferrario M, Campanelli R, Ramajoli I, Rosso R, De Ferrari GM, Ferlini M, Goffredo L, Bertoletti A, Klersy C, Pecci A, Moratti R, Tavazzi L (2005) Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood 105(1):199–206

    Article  PubMed  CAS  Google Scholar 

  5. Müller-Ehmsen J, Grundmann F, Schwinger RH, Schinkothe T (2005) Letters regarding article by Wojakowski et al, “mobilization of CD34/ CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction”. Circulation 111(20): e307; author reply e307–308

    Article  PubMed  Google Scholar 

  6. Müller-Ehmsen J, Scheid C, Grundmann F, Hirsch I, Turan G, Tossios P, Mehlhorn U, Schwinger RH (2005) The mobilization of CD34 positive mononuclear cells after myocardial infarction is abolished by revascularization of the culprit vessel. Int J Cardiol 103(1):7–11

    Article  PubMed  Google Scholar 

  7. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 98(18):10344–10349

    Article  PubMed  CAS  Google Scholar 

  8. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MAS, Rafii S (2000) Expression of VEGFR-2 and AC133 by circulating human CD341 cells identifies a population of functional endothelial precursors. Blood 95(3):952–958

    PubMed  CAS  Google Scholar 

  9. Peters WP, Rosner G, Ross M, Vredenburgh J, Meisenberg B, Gilbert C, Kurtzberg J (1993) Comparative effects of granulocyte-macrophage colony- stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) on priming peripheral blood progenitor cells for use with autologous bone marrow after high-dose chemotherapy. Blood 81(7):1709–1719

    PubMed  CAS  Google Scholar 

  10. Schächinger V, Assmus B, Britten M B, Honold J, Lehmann R, Teupe C, Abolmaali ND, Vogl TJ, Hofmann WK, Martin H, Dimmeler S, Zeiher AM (2004) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol 44(8):1690–1699

    Article  PubMed  Google Scholar 

  11. Schächinger V, Assmus B, Honold J, Lehmann R, Hofmann WK, Martin H, Dimmeler S, Zeiher AM (2006) Normalization of coronary blood flow in the infarct-related artery after intracoronary progenitor cell therapy: intracoronary Doppler substudy of the TOPCARE-AMI trial. Clin Res Cardiol 95(1):13–22

    Article  PubMed  Google Scholar 

  12. Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A, Sasaki K, Shimada T, Oike Y, Imaizumi T (2001) Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103(23):2776–2779

    PubMed  CAS  Google Scholar 

  13. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89(1):E1–E7

    PubMed  CAS  Google Scholar 

  14. Wojakowski W, Tendera M, Michalowska A, Majka M, Kucia M, Maslankiewicz K, Wyderka R, Ochala A, Ratajczak MZ (2004) Mobilization of CD34/CXCR4+, CD34/CD117+, cmet+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation 110(20):3213–3220

    Article  PubMed  CAS  Google Scholar 

  15. Wollert KC, Meyer GP, Lotz J, Ringes- Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, Hornig B, Messinger D, Arseniev L, Hertenstein B, Ganser A, Drexler H (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364 (9429):141–148

    Article  PubMed  Google Scholar 

  16. Ziegler BL, Valtieri M, Porada GA, De Maria R, Muller R, Masella B, Gabbianelli M, Casella I, Pelosi E, Bock T, Zanjani ED, Peschle C (1999) KDR receptor: a key marker defining hematopoietic stem cells. Science 285(5433):1553–1558

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Müller-Ehmsen MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grundmann, F., Scheid, C., Braun, D. et al. Differential increase of CD34, KDR/CD34, CD133/CD34 and CD117/CD34 positive cells in peripheral blood of patients with acute myocardial infarction. Clin Res Cardiol 96, 621–627 (2007). https://doi.org/10.1007/s00392-007-0543-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-007-0543-7

Key words

Navigation