Skip to main content

Advertisement

Log in

Cardioprotective effects of adipokine apelin on myocardial infarction

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Angiogenesis plays an important role in myocardial infarction. Apelin and its natural receptor (angiotensin II receptor-like 1, AGTRL-1 or APLNR) induce sprouting of endothelial cells in an autocrine or paracrine manner. The aim of this study is to investigate whether apelin can improve the cardiac function after myocardial infarction by increasing angiogenesis in infarcted myocardium. Left ventricular end-diastolic pressure (LVEDP), left ventricular end systolic pressure (LVESP), left ventricular developed pressure (LVDP), maximal left ventricular pressure development (±LVdp/dtmax), infarct size, and angiogenesis were evaluated to analyze the cardioprotective effects of apelin on ischemic myocardium. Assays of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, 5-bromo-2′-deoxyuridine incorporation, wound healing, transwells, and tube formation were used to detect the effects of apelin on proliferation, migration, and chemotaxis of cardiac microvascular endothelial cells. Fluorescein isothiocyanate-labeled bovine serum albumin penetrating through monolayered cardiac microvascular endothelial cells was measured to evaluate the effects of apelin on permeability of microvascular endothelial cells. In vivo results showed that apelin increased ±LV dp/dtmax and LVESP values, decreased LVEDP values (all p < 0.05), and promoted angiogenesis in rat heart after ligation of the left anterior descending coronary artery. In vitro results showed that apelin dose-dependently enhanced proliferation, migration, chemotaxis, and tube formation, but not permeability of cardiac microvascular endothelial cells. Apelin also increased the expression of vascular endothelial growth factor receptors-2 (VEGFR2) and the endothelium-specific receptor tyrosine kinase (Tie-2) in cardiac microvascular endothelial cells. These results indicated that apelin played a protective role in myocardial infarction through promoting angiogenesis and decreasing permeability of microvascular endothelial cells via upregulating the expression of VEGFR2 and Tie-2 in cardiac microvascular endothelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Iribarren C, Phelps BH, Darbinian JA, McCluskey ER, Quesenberry CP, Hytopoulos E, Vogelman JH, Orentreich N (2011) Circulating angiopoietins-1 and -2, angiopoietin receptor Tie-2 and vascular endothelial growth factor-A as biomarkers of acute myocardial infarction: a prospective nested case-control study. BMC Cardiovasc Disord 11:31

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Josko J, Gwozdz B, Jedrzejowska-Szypulka H, Hendryk S (2000) Vascular endothelial growth factor (VEGF) and its effect on angiogenesis. Med Sci Monit 6:1047–1052

    PubMed  CAS  Google Scholar 

  3. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  PubMed  CAS  Google Scholar 

  4. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  PubMed  CAS  Google Scholar 

  5. Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, Zou MX, Kawamata Y, Fukusumi S, Hinuma S, Kitada C, Kurokawa T, Onda H, Fujino M (1998) Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun 251:471–476

    Article  PubMed  CAS  Google Scholar 

  6. Devic E, Rizzoti K, Bodin S, Knibiehler B, Audigier Y (1999) Amino acid sequence and embryonic expression of msr/apj, the mouse homolog of Xenopus X-msr and human APJ. Mech Dev 84:199–203

    Article  PubMed  CAS  Google Scholar 

  7. Kleinz MJ, Davenport AP (2004) Immunocytochemical localization of the endogenous vasoactive peptide apelin to human vascular and endocardial endothelial cells. Regul Pept 118:119–125

    Article  PubMed  CAS  Google Scholar 

  8. Szokodi I, Tavi P, Foldes G, Voutilainen-Myllyla S, Ilves M, Tokola H, Pikkarainen S, Piuhola J, Rysa J, Toth M, Ruskoaho H (2002) Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ Res 91:434–440

    Article  PubMed  CAS  Google Scholar 

  9. Ronkainen VP, Ronkainen JJ, Hanninen SL, Leskinen H, Ruas JL, Pereira T, Poellinger L, Vuolteenaho O, Tavi P (2007) Hypoxia inducible factor regulates the cardiac expression and secretion of apelin. FASEB J 21:1821–1830

    Article  PubMed  CAS  Google Scholar 

  10. Cox CM, D’Agostino SL, Miller MK, Heimark RL, Krieg PA (2006) Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo. Dev Biol 296:177–189

    Article  PubMed  CAS  Google Scholar 

  11. Li F, Li L, Qin X, Pan W, Feng F, Chen F, Zhu B, Liao D, Tanowitz H, Albanese C, Chen L (2008) Apelin-induced vascular smooth muscle cell proliferation: the regulation of cyclin D1. Front Biosci 13:3786–3792

    Article  PubMed  CAS  Google Scholar 

  12. Kasai A, Shintani N, Oda M, Kakuda M, Hashimoto H, Matsuda T, Hinuma S, Baba A (2004) Apelin is a novel angiogenic factor in retinal endothelial cells. Biochem Biophys Res Commun 325:395–400

    Article  PubMed  CAS  Google Scholar 

  13. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    Article  PubMed  CAS  Google Scholar 

  14. Zeng XJ, Zhang LK, Wang HX, Lu LQ, Ma LQ, Tang CS (2009) Apelin protects heart against ischemia/reperfusion injury in rat. Peptides 30:1144–1152

    Article  PubMed  CAS  Google Scholar 

  15. Jia YX, Pan CS, Zhang J, Geng B, Zhao J, Gerns H, Yang J, Chang JK, Tang CS, Qi YF (2006) Apelin protects myocardial injury induced by isoproterenol in rats. Regul Pept 133:147–154

    Article  PubMed  CAS  Google Scholar 

  16. Kleinz MJ, Baxter GF (2008) Apelin reduces myocardial reperfusion injury independently of PI3K/Akt and P70S6 kinase. Regul Pept 146:271–277

    Article  PubMed  CAS  Google Scholar 

  17. Simpkin JC, Yellon DM, Davidson SM, Lim SY, Wynne AM, Smith CC (2007) Apelin-13 and apelin-36 exhibit direct cardioprotective activity against ischemia-reperfusion injury. Basic Res Cardiol 102:518–528

    Article  PubMed  CAS  Google Scholar 

  18. Smith CC, Mocanu MM, Bowen J, Wynne AM, Simpkin JC, Dixon RA, Cooper MB, Yellon DM (2007) Temporal changes in myocardial salvage kinases during reperfusion following ischemia: studies involving the cardioprotective adipocytokine apelin. Cardiovasc Drugs Ther 21:409–414

    Article  PubMed  CAS  Google Scholar 

  19. Petrova TV, Makinen T, Alitalo K (1999) Signaling via vascular endothelial growth factor receptors. Exp Cell Res 253:117–130

    Article  PubMed  CAS  Google Scholar 

  20. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87:1161–1169

    Article  PubMed  CAS  Google Scholar 

  21. Dumont DJ, Gradwohl G, Fong GH, Puri MC, Gertsenstein M, Auerbach A, Breitman ML (1994) Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 8:1897–1909

    Article  PubMed  CAS  Google Scholar 

  22. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180

    Article  PubMed  CAS  Google Scholar 

  23. Yu GG, Zeng XJ, Wang HX, Lu LQ, Zheng SP, Ma LQ, Chang J, Wang J, Zhang DM, Du FH, Zhang LK (2011) Cytochrome P450 2J3/epoxyeicosatrienoic acids mediate the cardioprotection induced by ischaemic post-conditioning, but not preconditioning, in the rat. Clin Exp Pharmacol Physiol 38:63–70

    Article  PubMed  Google Scholar 

  24. Yang JJ, Liu ZQ, Zhang JM, Wang HB, Hu SY, Liu JF, Wang CY, Chen YD (2013) Real-time tracking of adipose tissue-derived stem cells with injectable scaffolds in the infarcted heart. Heart Vessels 28:385–396

    Article  PubMed  Google Scholar 

  25. Pfeffer JM, Pfeffer MA, Fletcher PJ, Braunwald E (1991) Progressive ventricular remodeling in rat with myocardial infarction. Am J Physiol 260:H1406–H1414

    PubMed  CAS  Google Scholar 

  26. Yang JP, Liu HJ, Liu XF (2010) VEGF promotes angiogenesis and functional recovery in stroke rats. J Invest Surg 23:149–155

    Article  PubMed  CAS  Google Scholar 

  27. Moccia F, Baruffi S, Spaggiari S, Coltrini D, Berra-Romani R, Signorelli S, Castelli L, Taglietti V, Tanzi F (2001) P2y1 and P2y2 receptor-operated Ca2+ signals in primary cultures of cardiac microvascular endothelial cells. Microvasc Res 61:240–252

    Article  PubMed  CAS  Google Scholar 

  28. Nishida M, Carley WW, Gerritsen ME, Ellingsen O, Kelly RA, Smith TW (1993) Isolation and characterization of human and rat cardiac microvascular endothelial cells. Am J Physiol 264:H639–H652

    PubMed  CAS  Google Scholar 

  29. Zeng R, Chen YC, Zeng Z, Liu XX, Liu R, Qiang O, Li X (2012) Inhibition of mini-TyrRS-induced angiogenesis response in endothelial cells by VE-cadherin-dependent mini-TrpRS. Heart Vessels 27:193–201

    Article  PubMed  Google Scholar 

  30. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248

    Article  PubMed  CAS  Google Scholar 

  31. Li ZD, Bork JP, Krueger B, Patsenker E, Schulze-Krebs A, Hahn EG, Schuppan D (2005) VEGF induces proliferation, migration, and TGF-beta1 expression in mouse glomerular endothelial cells via mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Biochem Biophys Res Commun 334:1049–1060

    Article  PubMed  CAS  Google Scholar 

  32. Giurdanella G, Motta C, Muriana S, Arena V, Anfuso CD, Lupo G, Alberghina M (2011) Cytosolic and calcium-independent phospholipase A(2) mediate glioma-enhanced proangiogenic activity of brain endothelial cells. Microvasc Res 81:1–17

    Article  PubMed  CAS  Google Scholar 

  33. Fox SB, Leek RD, Weekes MP, Whitehouse RM, Gatter KC, Harris AL (1995) Quantitation and prognostic value of breast cancer angiogenesis: comparison of microvessel density, Chalkley count, and computer image analysis. J Pathol 177:275–283

    Article  PubMed  CAS  Google Scholar 

  34. Van Nieuw Amerongen GP, Van Hinsbergh VW (1999) Determination of the endothelial barrier function in vitro. Methods Mol Biol 96:183–189

    PubMed  Google Scholar 

  35. Magrane J, Christensen RA, Rosen KM, Veereshwarayya V, Querfurth HW (2006) Dissociation of ERK and Akt signaling in endothelial cell angiogenic responses to beta-amyloid. Exp Cell Res 312:996–1010

    Article  PubMed  CAS  Google Scholar 

  36. Kidoya H, Naito H, Takakura N (2010) Apelin induces enlarged and nonleaky blood vessels for functional recovery from ischemia. Blood 115:3166–3174

    Article  PubMed  CAS  Google Scholar 

  37. Kadoglou NP, Lampropoulos S, Kapelouzou A, Gkontopoulos A, Theofilogiannakos EK, Fotiadis G, Kottas G (2010) Serum levels of apelin and ghrelin in patients with acute coronary syndromes and established coronary artery disease—KOZANI Study. Transl Res 155:238–246

    Article  PubMed  CAS  Google Scholar 

  38. Rastaldo R, Cappello S, Folino A, Berta GN, Sprio AE, Losano G, Samaja M, Pagliaro P (2011) Apelin-13 limits infarct size and improves cardiac postischemic mechanical recovery only if given after ischemia. Am J Physiol Heart Circ Physiol 300:H2308–H2315

    Article  PubMed  CAS  Google Scholar 

  39. Kjekshus J (1987) Nitrates in acute myocardial infarction. Drugs 33(Suppl 4):140–146

    Article  PubMed  Google Scholar 

  40. Segers VF, Lee RT (2010) Protein therapeutics for cardiac regeneration after myocardial infarction. J Cardiovasc Transl Res 3:469–477

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mehlhorn U, Geissler HJ, Laine GA, Allen SJ (2001) Myocardial fluid balance. Eur J Cardiothorac Surg 20:1220–1230

    Article  PubMed  CAS  Google Scholar 

  42. Frangogiannis NG (2012) Regulation of the inflammatory response in cardiac repair. Circ Res 110:159–173

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Kasseckert SA, Schafer C, Kluger A, Gligorievski D, Tillmann J, Schluter KD, Noll T, Sauer H, Piper HM, Abdallah Y (2009) Stimulation of cGMP signalling protects coronary endothelium against reperfusion-induced intercellular gap formation. Cardiovasc Res 83:381–387

    Article  PubMed  CAS  Google Scholar 

  44. Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD, Glazer N, Holash J, McDonald DM, Yancopoulos GD (2000) Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 6:460–463

    Article  PubMed  CAS  Google Scholar 

  45. Ward NL, Dumont DJ (2002) The angiopoietins and Tie2/Tek: adding to the complexity of cardiovascular development. Semin Cell Dev Biol 13:19–27

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Natural Science Foundation of China (Grant No. 30900573) and Beijing Talents Education Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng-He Du or Xiang-Jun Zeng.

Additional information

B.-H. Zhang and C.-X. Guo contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, BH., Guo, CX., Wang, HX. et al. Cardioprotective effects of adipokine apelin on myocardial infarction. Heart Vessels 29, 679–689 (2014). https://doi.org/10.1007/s00380-013-0425-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-013-0425-z

Keywords

Navigation