Skip to main content

Advertisement

Log in

Apelin-13 and apelin-36 exhibit direct cardioprotective activity against ischemiareperfusion injury

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Protection against myocardial ischemia-reperfusion (I/R) injury involves activation of phosphatidylinositol-3-OH kinase (PI3K)- Akt/protein kinase B and p44/42 mitogen-activated protein kinase (MAPK), components of the reperfusion injury salvage kinase (RISK) pathway. The adipocytokine, apelin, activates PI3K-Akt and p44/42 in various tissues and we, therefore, hypothesised that it might demonstrate cardioprotective activity. Employing both in vivo (open-chest) and in vitro (Langendorff and cardiomyocytes) rodent (mouse and rat) models ofmyocardial I/R injury we investigated if apelin administered at reperfusion at concentrations akin to pharmacological doses possesses cardioprotective activity. Apelin-13 and the physiologically less potent peptide, apelin-36, decreased infarct size in vitro by 39.6% (p<0.01) and 26.1% (p<0.05) respectively. In vivo apelin-13 and apelin-36 reduced infarct size by 43.1% (p<0.01) and 32.7% (p<0.05). LY294002 and UO126, inhibitors of PI3K-Akt and p44/42 phosphorylation respectively, abolished the protective effects of apelin-13 in vitro.Western blot analysis provided further evidence for the involvement of PI3K-Akt and p44/42 in the cardioprotective actions of apelin. In addition,mitochondrial permeability transition pore (MPTP) opening was delayed by both apelin- 13 (127%, p<0.01) and apelin-36 (93%, p<0.01) which, in the case of apelin-13, was inhibited by LY294002 and mitogen-activated protein kinase kinase (MEK) inhibitor 1. This is the first study to yield evidence that the adipocytokine, apelin, produces direct cardioprotective actions involving the RISK pathway and the MPTP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Argaud L, Gateau-Roesch O, Raisky O, Loufourat J, Dominique R, Ovize M (2005) Postconditioning inhibits mitochondrial permeability transition. Circulation 111:194–197

    Article  PubMed  CAS  Google Scholar 

  2. Beltowski J (2003) Adiponectin and resistin — new hormones of white adipose tissue. Med Sci Monit 9:RA55–RA61

    PubMed  CAS  Google Scholar 

  3. Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM (2005) Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes 54:146–151

    Article  PubMed  CAS  Google Scholar 

  4. Bullard AJ, Govewalla AP, Yellon DM (2005) Erythropoietin protects the myocardium against reperfusion injury in vitro and in vivo. Basic Res Cardiol 100:397–403

    Article  PubMed  CAS  Google Scholar 

  5. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605

    Article  PubMed  CAS  Google Scholar 

  6. Efthymiou CA, Mocanu MM, Yellon DM (2005) Atorvastatin and myocardial reperfusion injury: new pleiotropic effect implicating multiple prosurvival signaling. J Cardiovasc Pharmacol 45:247–252

    Article  PubMed  CAS  Google Scholar 

  7. Frühbeck G (2006) Intracellular signaling pathways activated by leptin. Biochem J 393:7–20

    Article  PubMed  CAS  Google Scholar 

  8. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399:597–601

    Article  PubMed  CAS  Google Scholar 

  9. Habata Y, Fujii R, Hosoya M, Fukusumi S, Kawamata Y, Hinuma S, Kitada C, Nishizawa N, Murosaki S, Kurokawa T, Onda H, Tatemoto K, Fujino M (1999) Apelin, the natural ligand of the orphan receptor APJ, is abundantly secreted in colostrum. Biochim Biophys Acta 1452:25–35

    Article  PubMed  CAS  Google Scholar 

  10. Harvey J, Ashford ML (2003) Leptin in the CNS: much more than a satiety signal. Neuropharmacology 44:845–854

    Article  PubMed  CAS  Google Scholar 

  11. Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 61:448–460

    Article  PubMed  CAS  Google Scholar 

  12. Hausenloy DJ, Duchen MR, Yellon DM (2003) Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemiareperfusion injury. Cardiovasc Res 60:617–625

    Article  PubMed  CAS  Google Scholar 

  13. Hausenloy DJ, Mocanu MM, Yellon DM (2004) Cross-talk between the survival kinases during early reperfusion: its contribution to ischemic preconditioning. Cardiovasc Res 63:305–312

    Article  PubMed  CAS  Google Scholar 

  14. Hausenloy DJ, Yellon DM, Mani-Babu S, Duchen MR (2004) Preconditioning protects by inhibiting the mitochondrial permeability transition. Am J Physiol Heart Circ Physiol 287:H841–H849

    Article  PubMed  CAS  Google Scholar 

  15. Hausenloy DJ, Wynne AM, Yellon DM (2007) Ischemic preconditioning targets the reperfusion phase. Basic Res Cardiol 102:445–452

    Article  PubMed  CAS  Google Scholar 

  16. Heusch G (2006) Obesity — a risk factor or a RISK factor for myocardial infarction? Br J Pharmacol 149:1–3

    Article  PubMed  CAS  Google Scholar 

  17. Heusch G, Büchert A, Feldhaus S, Schulz R (2006) No loss of cardioprotection by postconditioning in connexin 43-deficient mice. Basic Res Cardiol 101:354–356

    Article  PubMed  CAS  Google Scholar 

  18. Ishida J, Hashimoto T, Hashimoto Y, Nishiwaki S, Iguchi T, Harada S, Sugaya T, Matsuzaki H, Yamamoto R, Shiota N, Okunishi H, Kihara M, Umemura S, Sugiyama F, Yagami KI, Kasuya Y, Mochizuki N, Fukamizu A (2004) Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensintype 1 receptor in blood pressure in vivo. J Biol Chem 279:26274–26279

    Article  PubMed  CAS  Google Scholar 

  19. Jacobson J, Duchen MR (2002) Mitochondrial oxidative stress and cell death in astrocytes — requirement for stored Ca2+ and sustained opening of the permeability transition pore. J Cell Sci 115:1175–1188

    PubMed  CAS  Google Scholar 

  20. Jonassen AK, Sack MN, Mjøs OD, Yellon DM (2001) Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signalling. Circ Res 89:1191–1198

    Article  PubMed  CAS  Google Scholar 

  21. Katugampola SD, Maguire JJ, Matthewson SR, Davenport AP (2001) ((125)I)- (Pyr(1))Apelin-13 is a novel radioligand for localizing the APJ orphan receptor in human and rat tissues with evidence for a vasoconstrictor role in man. Br J Pharmacol 132:1255–1260

    Article  PubMed  CAS  Google Scholar 

  22. Kawamata Y, Habata Y, Fukusumi S, Hosoya M, Fujii R, Hinuma S, Nishizawa N, Kitada C, Onda H, Nishimura O, Fujino M (2001) Molecular properties of apelin: tissue distribution and receptor binding. Biochim. Biophys Acta 1538:162–171

    Article  CAS  Google Scholar 

  23. Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:2548–2556

    Article  PubMed  CAS  Google Scholar 

  24. Kleinz MJ, Davenport AP (2004) Immunocytochemical localization of the endogenous vasoactive peptide apelin to human vascular and endocardial endothelial cells. Regul Pept 118:119–125

    Article  PubMed  CAS  Google Scholar 

  25. Kleinz MJ Davenport AP (2005) Emerging roles of apelin in biology and medicine. Pharmacol Ther 107:198–211

    Article  PubMed  CAS  Google Scholar 

  26. Kleinz MJ, Skepper JN, Davenport AP (2005) Immunocytochemical localization of the apelin receptor, APJ, to human cardiomyocytes, vascular smooth muscle and endothelial cells. Regul Pept 126:233–240

    Article  PubMed  CAS  Google Scholar 

  27. Koerener A, Kratsc J, Kiess W (2005) Adipocytokines: leptin-the classical, resistin- the controversial, adiponectinthe promising, and more to come. Best Practice Res Clin Endocrinol Metab 19:525–546

    Article  CAS  Google Scholar 

  28. Kovacic S, Soltys CL, Barr AJ, Shiojima I, Walsh K, Dyck JR (2003) Akt activity negatively regulates phosphorylation of AMP-activated protein kinase in the heart. J Biol Chem 278:39422–39427

    Article  PubMed  CAS  Google Scholar 

  29. Lee DK, Cheng R, Nguyen T, Fan T, Kariyawasam AP, Liu Y, Osmond DH, George SR, O’Dowd BF (2000) Characterisation of apelin, the ligand for the APJ receptor. J Neurochem 74:34–41

    Article  PubMed  CAS  Google Scholar 

  30. Marber MS, Mestril R, Chi SH, Sayen MR, Yellon DM, Dillmann WH (1995) Overexpression of the rat inducible 70- kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischaemic injury. J Clin Invest 95:1446–1456

    Article  PubMed  CAS  Google Scholar 

  31. Masri B, Knibiehler B, Audigier Y (2005) Apelin signaling: a promising pathway from cloning to pharmacology. Cell Sig 17:415–426

    Article  CAS  Google Scholar 

  32. Masri B, Lahlou H, Mazarguil H, Knibiehler B, Audigier Y (2004) Apelin (65–77) activates extracellular signalregulated kinases via a PTX-sensitive G protein. Biochem Biophys Res Commun 290:539–545

    Article  CAS  Google Scholar 

  33. Masri B, Morin N, Cornu M, Knibiehler B, Audigier Y (2004) Apelin (65–77) activates p70S6 kinase and is mitogenic for umbilical endothelial cells. FASEB J 18:1909–1911

    PubMed  CAS  Google Scholar 

  34. Medhurst AD, Jennings CA, Robbins MJ, Davis RP, Ellis C, Winborn KY, Lawrie KW, Hervieu G, Riley G, Bolaky JE, Herrity NC, Murdock P, Darker JG (2003) Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand. J Neurochem 84:1162–1172

    Article  PubMed  CAS  Google Scholar 

  35. O’Dowd B F, Heiber M, Chan A, Heng HH, Tsui LC, Kennedy JL, Shi X, Petronis A,George SR,Nguyen T (1993) A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene 136:355–360

    Article  PubMed  Google Scholar 

  36. Patel JB, Valencik ML, Pritchett AM, Burnett JC,McDonald JA, Redfield MM (2005) Cardiac-specific attenuation of natriuretic peptide A receptor activity accentuates adverse cardiac remodeling and mortality in response to pressure overload. Am J Physiol Heart Circ Physiol 289:777–784

    Article  CAS  Google Scholar 

  37. Rajapurohitam V, Gan XT, Kirshenbaum LA, Karmazyn M (2003) The obesity associated peptide leptin induces hypertrophy in neonatal rat ventricular myocytes. Circ Res 93:277–279

    Article  PubMed  CAS  Google Scholar 

  38. Schulz R, Cohen MV, Behrends M, Downey JM, Heusch G (2001) Signal transduction of ischemic preconditioning. Cardiovasc Res 52:181–198

    Article  PubMed  CAS  Google Scholar 

  39. Shanmuganathan S, Hausenloy DJ, Duchen MR, Yellon DM (2005) Mitochondrial permeability transition pore as a target for cardioprotection in the human heart. Am J Heart Circ Physiol 289:H237–H242

    Article  CAS  Google Scholar 

  40. Shibata R, Sato K, Pimental DR, Takemura Y, Kihara S, Ohashi K, Funahashi T, Ouchi N, Walsh K (2005) Adiponectin protects against myocardial ischemiareperfusion injury through AMPK- and COX-2 dependent mechanisms. Nat Med 10:1384–1389

    Article  CAS  Google Scholar 

  41. Sivaraman V, Mudalagiri NR Di Salvo C, Kolvekar S, Hayward M, Yap J, Keogh B, Hausenloy DJ, Yellon DM (2007) Postconditioning protects human atrial muscle through the activation of the RISK pathway. Basic Res Cardiol 102:453–459

    Article  PubMed  Google Scholar 

  42. Smith CCT, Mocanu MM, Davidson SM, Wynne AM, Simpkin JC, Yellon DM (2006) Leptin, the obesity-associated hormone, exhibits direct cardioprotective effects. Br J Pharmacol 149:5–13

    Article  PubMed  CAS  Google Scholar 

  43. Staat P, Rioufol G, Piot C, Cottin Y, Cung TT, L’Huillier I, Aupetit JF, Bonnefoy E, Finet G, André-Fouët X, Ovize M (2005) Postconditioning the human heart. Circulation 112:2085–2088

    Article  Google Scholar 

  44. Sumeray MS, Yellon DM (1998) Characterisation and validation of a murine model of global ischaemia-reperfusion injury. Mol Cell Biochem 186:61–68

    Article  PubMed  CAS  Google Scholar 

  45. Szokodi I, Tavi P, Foldes G (2002) Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ Res 91:434–440

    Article  PubMed  CAS  Google Scholar 

  46. Taheri S, Murphy K, Cohen M, Sujkovic E, Kennedy A, Dhillo W, Dakin C, Sajedi A, Ghatei M, Bloom S (2002) The effects of centrally administered apelin-13 on food intake, water intake and pituitary hormone release in rats. Biochem Biophys Res Commun 291:1208–1212

    Article  PubMed  CAS  Google Scholar 

  47. Tajmir P, Ceddia RB, Li RK, Coe IR, Sweeney G (2004) Leptin increases cardiomyocyte hyperplasia via extracellular signal-regulated kinase- and phosphatidylinositol 3-kinase-dependent signaling pathways. Endocrinol 145:1550–1555

    Article  CAS  Google Scholar 

  48. Tatemoto K, Takayama K, Zou MX, Kumaki I, Zhang W, Kumano K, Fujimiya M (2001) The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul Pept 99:87–92

    Article  PubMed  CAS  Google Scholar 

  49. Tsang A, Hausenloy DJ, Mocanu, MM, Yellon DM (2004) Postconditioning: A form of "modified reperfusion" protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 95:230–232

    Article  PubMed  CAS  Google Scholar 

  50. Tsang A, Hausenloy DJ, Yellon DM (2005) Myocardial postconditioning: reperfusion injury revisited. Am J Physiol Heart Circ Physiol 289:H2–H7

    Article  PubMed  CAS  Google Scholar 

  51. Vinten-Johansen J, Zhao Z-Q, Zatta AJ, Kin H, Halkos ME, Kerendi F (2005) Postconditioning a new link in nature’s armory against myocardial ischemiareperfusion injury. Basic Res Cardiol 100:295–310

    Article  PubMed  CAS  Google Scholar 

  52. Wang G, Anini Y, Wei W, Qi X, O’Carroll AM, Mochizuki T, Wang HQ, Hellmich MR, Englander EW, Greeley GH (2004) Apelin, a new enteric peptide: localization in the gastrointestinal tract, ontogeny, and stimulation of gastric cell proliferation and of cholecystokinin secretion. Endocrinol 145:1342–1348

    Article  CAS  Google Scholar 

  53. Wityak J, Hobbs FW, Gardner DS, Santella JB 3rd, Petraitis JJ, Sun JH, Favata MF, Daulerio AJ, Horiuchi KY, Copeland RA, Scherle PA, Jaffe BD, Trzaskos JM, Magolda RL, Trainor GL, Duncia J (2004) Beyond UO126. Dianion chemistry leading to the rapid synthesis of a series of potent MEK inhibitors. Bioorg Med Chem Lett 14:1483–1486

    Article  PubMed  CAS  Google Scholar 

  54. Yellon DM, Baxter GF (1999) Reperfusion injury revisited. Is there a role for growth factor signalling in limiting lethal reperfusion injury? Trends Cardiovasc Med 9:245–249

    Article  PubMed  CAS  Google Scholar 

  55. Yellon DM, Downey JM (2003) Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 83:1113–1151

    PubMed  CAS  Google Scholar 

  56. Zabeau L, Lavens D, Peelman, F, Eyckerman, S, Vandekerckhove J, Tavernier J (2003) Ins and outs of leptin receptor activation. FEBS Lett 546:45–50

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Yellon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simpkin, J.C., Yellon, D.M., Davidson, S.M. et al. Apelin-13 and apelin-36 exhibit direct cardioprotective activity against ischemiareperfusion injury. Basic Res Cardiol 102, 518–528 (2007). https://doi.org/10.1007/s00395-007-0671-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-007-0671-2

Key words

Navigation