Skip to main content
Log in

Earth System Model FGOALS-s2: Coupling a dynamic global vegetation and terrestrial carbon model with the physical climate system model

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Earth System Models (ESMs) are fundamental tools for understanding climate-carbon feedback. An ESM version of the Flexible Global Ocean-Atmosphere-Land System model (FGOALS) was recently developed within the IPCC AR5 Coupled Model Intercomparison Project Phase 5 (CMIP5) modeling framework, and we describe the development of this model through the coupling of a dynamic global vegetation and terrestrial carbon model with FGOALS-s2. The performance of the coupled model is evaluated as follows.

The simulated global total terrestrial gross primary production (GPP) is 124.4 PgC yr−1 and net primary production (NPP) is 50.9 PgC yr−1. The entire terrestrial carbon pools contain about 2009.9 PgC, comprising 628.2 PgC and 1381.6 PgC in vegetation and soil pools, respectively. Spatially, in the tropics, the seasonal cycle of NPP and net ecosystem production (NEP) exhibits a dipole mode across the equator due to migration of the monsoon rainbelt, while the seasonal cycle is not so significant in Leaf Area Index (LAI). In the subtropics, especially in the East Asian monsoon region, the seasonal cycle is obvious due to changes in temperature and precipitation from boreal winter to summer. Vegetation productivity in the northern mid-high latitudes is too low, possibly due to low soil moisture there.

On the interannual timescale, the terrestrial ecosystem shows a strong response to ENSO. The model-simulated Niño3.4 index and total terrestrial NEP are both characterized by a broad spectral peak in the range of 2–7 years. Further analysis indicates their correlation coefficient reaches −0.7 when NEP lags the Niño3.4 index for about 1–2 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bacastow, R. B., 1976: Modulation of atmospheric carbon dioxide by the Southern Oscillation. Nature, 261, 116–118.

    Article  Google Scholar 

  • Bao, Q., Y. M. Liu, T. J. Zhou, Z. Z. Wang, G. X. Wu, and P. F. Wang, 2006: The sensitivity of the spectral atmospheric general circulation model of LASG/IAP to the land process. Chinese J. Atmos. Sci., 30, 1077–1099. (in Chinese)

    Google Scholar 

  • Bao, Q., G. X. Wu, Y. M. Liu, J. Yang, Z. Z. Wang, and T. J. Zhou, 2010: An introduction to the coupled model FGOALS1.1-s and its performance in East Asia. Adv. Atmos. Sci., 27, 1131–1142, doi: 10.1007/s00376-010-9177-1.

    Article  Google Scholar 

  • Bao, Q., and Coauthors, 2012: The flexible global ocean-atmosphere-land system model, spectral version: FGOALS-s2. Adv. Atmos. Sci., 30(3), 561–576, doi: 10.1007/s00376-012-2113-9.

    Article  Google Scholar 

  • Beer, C., and Coauthors, 2010: Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science, 329, 834–838.

    Article  Google Scholar 

  • Bousquet, P., P. Peylin, P. Ciais, C. L. Quere, P. Friedlingstein, and P. P. Tans, 2000: Regional changes in cabon dioxide fluxes of land and oceans since 1980. Science, 290, 1342–1346.

    Article  Google Scholar 

  • Brovkin, V., A. Ganopolski, and Y. Svirezhev, 1997: A continuous climate-vegetation classification for use in climate-biosphere studies. Ecological Modelling, 101, 251–261.

    Article  Google Scholar 

  • Collins, W. D., and Coauthors, 2006: The community climate system model version 3 (CCSM3). J. Climate, 19, 2122–2143.

    Article  Google Scholar 

  • Cox, P. M., 2001: Description of the “TRIFFID” dynamic global vegetation model. Hadley Center Tech. Note 24, 1–16.

    Google Scholar 

  • Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184–187.

    Article  Google Scholar 

  • Cramer, W., and Coauthors, 1999: Comparing global models of terrestrial net primary productivity (NPP): Overview and key results. Global Change Biology, 5, 1–15.

    Article  Google Scholar 

  • Denman, K. L., and Coauthors, 2007: Couplings between changes in the climate system and biogeochemistry. Climate Change 2007: The Physical Science Basis. Solomon et al., Eds., Cambridge University Press, Cambridge, 499–587.

    Google Scholar 

  • Dufresne, J. L., P. Friedlingstein, M. Berthelot, L. Bopp, P. Ciais, L. Fairhead, H. Le Treut, and P. Monfray, 2002: On the magnitude of positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett., 29(10), doi: 10.1029/2001GL013777.

    Google Scholar 

  • Foley, J. A., I. C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, and A. Haxeltine, 1996: An integrating biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles, 10, 603–628.

    Article  Google Scholar 

  • Friedlingstein, P., and Coauthors, 2006: Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19, 3337–3353.

    Article  Google Scholar 

  • Hagemann, S., 2002: An improved land surface parameter dataset for global and regional climate models. Max Planck Inst. Meteorol (MPI) Rep., 336, 1–21.

    Google Scholar 

  • Heimann, M., and M. Reichstein, 2008: Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 451, 289–292.

    Article  Google Scholar 

  • Ji, J. J., 1995: A climate-vegetation interaction model: Simulating physical and biological processes at the surface. Journal of Biogeography, 22, 445–451.

    Article  Google Scholar 

  • Jones, C. D., M. Collins, P. M. Cox, and S. A. Spall, 2001: The carbon cycle response to ENSO: A coupled climate-carbon cycle and model study. J. Climate, 14, 4113–4129.

    Article  Google Scholar 

  • Keeling, C. D., and R. Revelle, 1985: Effects of EL Nino/Southern Oscillation on the atmospheric content of carbon dioxide. Meteoritics, 20, 437–450.

    Google Scholar 

  • Keeling, C. D., R. B. Bacastow, A. E. Bainbridge, C. A. Ekdahl, J. R., P. R. Guenther, and L. S. Waterman, 1976: Atmospheric carbon dioxide variations at Mauna Loa pbservatory, Hawaii. Tellus, 28, 538–551.

    Article  Google Scholar 

  • Levis, S., G. B. Bonan, M. Vertenstein, and K. W. Oleson, 2004: The community land model’s dynamic global vegetation model (CLM-DGVM): Technical description and user’s guide. NCAR Tech. Note, NCAR/TN-459+IA, 64pp.

    Google Scholar 

  • Li, Y. C., and Y. F. Xu, 2012: Uptake and storage of anthropogenic CO2 in the Pacific Ocean estimated using two modeling approaches. Adv. Atmos. Sci., 29, 795–809, doi: 10.1007/s00376-012-1170-4.

    Article  Google Scholar 

  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Inter. J. Climatol., 25, 693–712.

    Article  Google Scholar 

  • Myneni, R. B., R. R. Nemani, and S. W. Running, 1997. Algorithm for the estimation of global land cover, LAI and FPAR based on radiative transfer models. IEEE Trans. Geosc. Remote Sens., 35, 1380–1393.

    Article  Google Scholar 

  • Oleson, K. W., and Coauthors, 2004: Technical Description of the Community Land Model (CLM). NCAR/TN-461+STR, 174pp.

    Google Scholar 

  • Qian, H. F., R. Joseph, and N. Zeng, 2008: Response of the terrestrial carbon cycle to the El Nino-Southern Oscillation. Tellus, 60B, 537–550.

    Google Scholar 

  • Qian, H. F., R. Joseph, and N. Zeng, 2009: Enhanced terrestrial carbon uptake in the northern high latitudes in the 21st century from the coupled carbon cycle climate model intercomparison project model projections. Global Change Biology, 16, 641–656.

    Article  Google Scholar 

  • Saha, S., and Coauthors, 2010: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1057.

    Article  Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2009: A summary of the CMIP5 experiment design. [Available online at http://cmip-pcmdi.llnl.gov/cmip5/docs/TaylorCMIP5design.pdf.]

    Google Scholar 

  • Zeng, N., 2003: Glacial-interglacial atmospheric CO2 change — The glacial burial hypothesis. Adv. Atmos. Sci., 20, 677–693.

    Article  Google Scholar 

  • Zeng, N., H. F. Qian, E. Munoz, and R. Iacono, 2004: How strong is carbon cycle-climate feedback under global warming? Geophys. Res. Lett., 31, L20203, doi: 10.1029/2004GL020904.

    Article  Google Scholar 

  • Zeng, N., A. Mariotti, and P. Wetzel, 2005: Terrestrial mechanisms of interannual CO2 variability. Global Biogeochemical Cycles, 19, GB1016, doi: 10.1029/2004GB002273.

    Article  Google Scholar 

  • Zhang, X. H., G. Y. Shi, H. Liu, and Y. Q. Yu, 2000: IAP Global Ocean-Atmosphere-Land System Model. Science Press, Beijing, 252pp. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Bao  (包 庆).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Bao, Q., Zeng, N. et al. Earth System Model FGOALS-s2: Coupling a dynamic global vegetation and terrestrial carbon model with the physical climate system model. Adv. Atmos. Sci. 30, 1549–1559 (2013). https://doi.org/10.1007/s00376-013-2169-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-2169-1

Key words

Navigation