Skip to main content
Log in

Glacial-interglacial atmospheric CO2 change —The glacial burial hypothesis

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Organic carbon buried under the great ice sheets of the Northern Hemisphere is suggested to be the missing link in the atmospheric CO2 change over the glacial-interglacial cycles. At glaciation, the advancement of continental ice sheets buries vegetation and soil carbon accumulated during warmer periods. At deglaciation, this burial carbon is released back into the atmosphere. In a simulation over two glacial-interglacial cycles using a synchronously coupled atmosphere-land-ocean carbon model forced by reconstructed climate change, it is found that there is a 547-Gt terrestrial carbon release from glacial maximum to interglacial, resulting in a 60-Gt (about 30-ppmv) increase in the atmospheric CO2, with the remainder absorbed by the ocean in a scenario in which ocean acts as a passive buffer. This is in contrast to previous estimates of a land uptake at deglaciation. This carbon source originates from glacial burial, continental shelf, and other land areas in response to changes in ice cover, sea level, and climate. The input of light isotope enriched terrestrial carbon causes atmospheric δ13C to drop by about 0.3‰ at deglaciation, followed by a rapid rise towards a high interglacial value in response to oceanic warming and regrowth on land. Together with other ocean based mechanisms such as change in ocean temperature, the glacial burial hypothesis may offer a full explanation of the observed 80–100-ppmv atmospheric CO2 change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J. M., H. Faure, L. Faure-Denard, J. M. McGlade, and others, 1990: Increase in terrestrial carbon storage from the last glacial maximum to the present.Nature,348, 711–714.

    Article  Google Scholar 

  • Adams, J. M. and H. Faure, 1998: A new estimate of changing carbon storage on land since the last glacial maximum, based on global land ecosystem reconstruction.Global Planet. Change,17, 3–24.

    Article  Google Scholar 

  • Archer, D., A. Winguth, D. Lea, and N. Mahowald, 2000: What caused the glacial/interglacial atmospheric pCO(2) cycles?Rev. Geophys.,38, 159–189.

    Article  Google Scholar 

  • Beerling, D. J., 1999: New estimates of carbon transfer to terrestrial ecosystems between the last glacial maximum and the Holocene.Terra Nova,11, 162–167.

    Article  Google Scholar 

  • Berger, W. H., and E. Vincent, 1986: Deep-sea carbonates: Reading the carbon isotope signal.Geol. Rundschau.,75, 249–269.

    Article  Google Scholar 

  • Bird, M. I., J. Lloyd, and G. D. Farquhar, 1994: Terrestrial carbon storage at the LGM.Nature,371, 566–566.

    Article  Google Scholar 

  • Broecker, W. S., and G. M. Henderson, 1998: The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial CO2 changes.Paleoceanography,13, 352–364.

    Article  Google Scholar 

  • Collatz, G. J., J. A. Berry, and J. S. Clark, 1998: Effects of climate and atmospheric CO2 partial pressure on the global distribution of C-4 grasses: Present, past, and future.Oecologia,114, 441–454.

    Article  Google Scholar 

  • Crowley, T. J., 1995: Ice age terrestrial carbon changes revisited.Global Biogeochem. Cycle,9, 377–389.

    Article  Google Scholar 

  • Curry, W. B., J.-C. Duplessy, L. D. Labeyrie, and N. J. Shackleton, 1988: Changes in the distribution ofdelta 13C of deep water CO2 between the last glacial and the Holocene.Paleoceanography,3, 317–341.

    Article  Google Scholar 

  • Duplessy, J. -C., N. J. Shackleton, R. J. Fairbanks, L. D. Labeyrie, D. Oppo, and N. Kallel, 1988: Deep water source variations during the last climatic cycle and their impact on the global deep water circulation.Paleoceanography 3, 343–360.

    Article  Google Scholar 

  • Esser, G., and M. Lautenschlager, 1994: Estimating the change of carbon in the terrestrial biosphere from 18 000 BP to present using a carbon cycle model.Environ. Pollut.,83, 45–53.

    Article  Google Scholar 

  • Falkowski, P., R. J. Scholes, E. Boyle, and others, 2000: The global carbon cycle: A test of our knowledge of earth as a system.Science,290, 291–296.

    Article  Google Scholar 

  • Field, C. B., 2001: Plant physiology of the “missing” carbon sink.Plant Physiology,125, 25–28.

    Article  Google Scholar 

  • Francois, L. M., C. Delire, P. Warnant, and G. Munhoven, 1998: Modelling the glacial-interglacial changes in the continental biosphere.Global Planet. Change,17, 37–52.

    Article  Google Scholar 

  • Franzen, L. G., 1994: Are wetlands the key to the ice-age cycle enigma.Ambio,23, 300–308.

    Google Scholar 

  • Friedlingstein, P., C. Delire, J. F. Muller, and J. C. Gerard, 1992: The climate induced variation of the continental biosphere: a model simulation of the last glacial maximum.Geophys. Res. Lett.,19, 897–900.

    Article  Google Scholar 

  • Friedlingstein, P., K. C. Prentice, I. Y. Fung, J. G. John, and G. P. Brasseur, 1995: Carbon-biosphere-climate interaction in the last glacial maximum climate.J. Geophys. Res.,100, 7203–7221.

    Article  Google Scholar 

  • Gildor, H., and E. Tziperman, 2001: Physical mechanisms behind biogeochemical glacial-interglacial CO2 variations.Geophys. Res. Lett.,28(12), 2421–2424.

    Article  Google Scholar 

  • Harden, J. W., E. T. Sundquist, R. F. Stallard, and R. K. Mark, 1992: Dynamics of soil carbon during deglaciation of the Laurentide Ice Sheet.Science,258, 1921–1924.

    Article  Google Scholar 

  • Heinze, C., 2001: Towards the time dependent modeling of sediment core data on a global basis.Geophys. Res. Lett.,28, 4211–4214.

    Article  Google Scholar 

  • Heinze, C., and E. Maier-Reimer, 1999: The Hamburg Oceanic Carbon Cycle Circulation Model Version “HAMOCC2s” for long time integrations. DKRZ Rep. 20, Ger. Clim. Comput. Cent., Hamburg.

    Google Scholar 

  • Kaplan, J. O., I. C. Prentice, W. Knorr, and others, 2002: Modeling the dynamics of terrestrial carbon storage since the Last Glacial Maximum.Geophys. Res. Lett.,29(22), 2074.

    Article  Google Scholar 

  • Keir, R. S., 1995: Is there a component of Pleistocene CO2 change associated with carbonate dissolution cycles.Paleoceanography,10: 871–880.

    Article  Google Scholar 

  • Klinger, L. F., 1991: Peatland formation and ice ages: A possible Gaian mechanism related to community succession.Scientists on Gaia, S. H. Schneider and P. J. Boston, Eds., MIT press, Cambridge, Mass, 247–255

    Google Scholar 

  • Kutzbach, J., R. Gallimore, S. Harrison, P. Behling, and others, 1998: Climate and biome simulations for the past 21 000 years.Quaternary Sci. Rev.,17, 473–506.

    Article  Google Scholar 

  • Leuenberger, M., U. Siegenthaler, and C. C. Langway, 1992: Carbon isotope composition of atmospheric CO2 during the last ice-age from an Antarctic ice core.Nature,357, 488–490.

    Article  Google Scholar 

  • Liski, J., H. Ilvesniemi, A. Makela, C. J. Westman, 1999: CO2 emissions from soil in response to climatic warming are overestimated-The decomposition of old soil organic matter is tolerant of temperature.Ambio,28, 171–174.

    Google Scholar 

  • Lynch-Stieglitz, J., and R. G. Fairbanks, 1994: A conservative tracer for glacial ocean circulation from carbon isotope and palaeo-nutrient measurements in benthic foraminifera.Nature,369: 308–310.

    Article  Google Scholar 

  • MacAyeal, D. R., 1993: BINGE/PURGE oscillations of the Laurentide Ice Sheet as a cause of the North Atlantic Heinrich events.Paleoceanography,8, 775–784.

    Article  Google Scholar 

  • Marino, B. D., M. B. McElroy, R. J. Salawitch, and W. G. Spaulding, 1992: Glacial-to-interglacial variations in the carbon isotopic composition of atmospheric CO2.Nature,357, 461–466.

    Article  Google Scholar 

  • Martin, J. H., 1990: Glacial-interglacial CO2 change: The iron hypothesis.Paleoceanography,5, 1–13.

    Article  Google Scholar 

  • Maslin, M., and E. Thomas, 2003: Balancing the deglacial global carbon budget: The hydrate factor.Quaternary Sci. Rev.,22, 1729–1736.

    Article  Google Scholar 

  • Maslin, M. A., J. Adams, E. Thomas, H. Faure, and R. Haines-Young, 1995: Estimating the carbon transfer between the ocean, atmosphere and the terrestrial biosphere since the last glacial maximum.Terra Nova,7, 358–366.

    Article  Google Scholar 

  • New, M., M. Hulme, and P. Jones, 1999: Representing twentieth-century space-time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology.J. Climate.,12, 829–856.

    Article  Google Scholar 

  • Ninnemann, U. S., and C. D. Charles, 1997: Regional differences in Quaternary Subantarctic nutrient cycling: Link to intermediate and deep water ventilation.Paleoceanography,12: 560–567.

    Article  Google Scholar 

  • Olson, J. S., R. M. Garrels, R. A. Berner, T. V. Armentano, M. I. Dyer, and D. H. Yaalon, 1985: The natural carbon cycle.Atmospheric Carbon Dioxide and the Global Carbon Cycle, J. R. Trabalka, Ed., US DOE/ER0239, Washington D.C., section 8.3.2, 186–188.

  • Otto, D., D. Rasse, J. Kaplan, and others, 2002: Biospheric carbon stocks reconstructed at the Last Glacial Maximum: Comparison between general circulation models using prescribed and computed sea surface temperatures.Global Planet Change,33, 117–138.

    Article  Google Scholar 

  • Peltier, W. R., 1994: Ice age paleotopography.Science,265, 195–201.

    Article  Google Scholar 

  • Peng, C. H., J. Guiot, and E. van Campo, 1995: Reconstruction of the past terrestrial carbon storage of the Northern Hemisphere from the Osnabrueck Biosphere Model and palaeodata.Climate Research,5, 107–118.

    Article  Google Scholar 

  • Petit, J. R., J. Jouzel, D. Raynaud, N. I. Barkov, and others, 1999: Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica.Nature,399, 429–436.

    Article  Google Scholar 

  • Pinot, S., G. Ramstein, S. P. Harrison, I. C. Prentice, and others, 1999: Tropical paleoclimates at the Last Glacial Maximum: Comparison of Paleoclimate Modeling Intercomparison Project (PMIP) simulations and paleodata.Climate Dyn.,15, 857–874.

    Article  Google Scholar 

  • Prentice, I. C., M. T. Sykes, M. Lautenschlager, S. P. Harrison, O. Denissenki, and P. J. Bartlein, 1993: Modeling the increase in terrestrial carbon storage after the last glacial maximum.Global Ecol. Biogeog. Lett.,3, 67–76.

    Article  Google Scholar 

  • Prentice, K. C., and I. Y. Fung, 1990: The sensitivity of terrestrial carbon storage to climate change.Nature,346, 48–51.

    Article  Google Scholar 

  • Ridgwell, A. J., 2001: Glacial-interglacial perturbations in the global carbon cycle. Ph. D. dissertation, Univ. of East Anglia at Norwich, UK. Available at http://tracer.env.uea.ac.uk/ e114/ridgwell_2001. pdf

    Google Scholar 

  • Schlesinger, W. H., 1991:Biogeochemistry: An Analysis of Global Change. Academic Press, San Diego, CA, USA, 443pp.

    Google Scholar 

  • Shackleton, N. J., 1977: Carbon-13 in Uvigerina: Tropical rainforest history and the equatorial Pacific carbonate dissolution cycles.The Fate of Fossil Fuel CO2 in the Oceans, N. R. Andersen and A. Malahoff, Eds., Plenum, New York, 401–428.

    Google Scholar 

  • Sigman, D. M., and E. A. Boyle, 2000: Glacial/interglacial variations in atmospheric carbon dioxide.Nature,407, 859–869.

    Article  Google Scholar 

  • Smith, H. J., H. Fischer, M. Wahlen, D. Mastroianni, and others, 1999: Dual modes of the carbon cycle since the Last Glacial Maximum.Nature,400, 248–250.

    Article  Google Scholar 

  • Spero, H. J., and D. W. Lea, 2002: The cause of carbon isotope minimum events on glacial terminations.Science,296, 522–525.

    Article  Google Scholar 

  • Stephens, B. B., and R. F. Keeling, 2000: The influence of Antarctic sea ice on glacial-interglacial CO2 variations.Nature,404, 171–174.

    Article  Google Scholar 

  • Sundquist, E. T., 1993: The global carbon dioxide budget.Science,259, 934–941.

    Google Scholar 

  • van Campo, E., J. Guiot, and C. H. Peng, 1993: A databased re-appraisal of the terrestrial carbon budget at the Last Glacial Maximum.Global Planet. Change,8, 189–201.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, N. Glacial-interglacial atmospheric CO2 change —The glacial burial hypothesis. Adv. Atmos. Sci. 20, 677–693 (2003). https://doi.org/10.1007/BF02915395

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02915395

Key words

Navigation