Skip to main content
Log in

Litter chemical traits, microbial and soil stoichiometry regulate organic carbon accrual of particulate and mineral-associated organic matter

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Plant litter quality considerably affects C accrual in soil organic matter (SOM). However, the chemical traits of litter that influence C distribution in SOM fractions, such as particulate organic matter (POM) and mineral-associated organic matter (MAOM), are not fully understood. Thus, we conducted a 150-day incubation experiment with litter addition (poplar leaves, roots, grasses grown under the canopy, and a mixture of these three litter types). We analyzed the organic C concentration in the POM and MAOM fractions and the stoichiometric ratios (C:N:P) of the soil and microbial biomass 50, 100, and 150 days after the initial litter addition. Microbial residue C (amino sugar biomarkers) in SOM fractions was registered at the end of decomposition. High-quality litter (i.e., leaf) increased MAOM-C accrual, and low-quality litter (i.e., root and grass) contributed more to POM-C accrual. The mixed litter addition accumulated more C in the SOM via high POM-C levels compared to single litter input, likely resulting from an antagonistic effect caused by different litter trait dissimilarity. Moreover, POM-C dynamics were dominated by litter chemical traits during litter decomposition, and MAOM-C was controlled mainly by microbial and soil stoichiometry. Furthermore, the contribution of microbial residue C to SOM (especially POM-C) was lower in the mixed litter than in the single litter. These findings highlight the direct or indirect impacts of litter types on the C dynamics of POM and MAOM, and demonstrate that litter diversity is conducive to C accumulation in SOM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Almeida LF, Souza IF, Hurtarte LC, Teixeira PPC, Inagaki TM, Silva IR, Mueller CW (2021) Forest litter constraints on the pathways controlling soil organic matter formation. Soil Biol Biochem 163:108447

    Article  CAS  Google Scholar 

  • Appuhn A, Joergensen RG (2006) Microbial colonisation of roots as a function of plant species. Soil Biol Biochem 38:1040–1051

    Article  CAS  Google Scholar 

  • Asada K, Kanda T, Yamashita N, Asano M, Eguchi S (2022) Interpreting stoichiometric homeostasis and flexibility of soil microbial biomass carbon, nitrogen, and phosphorus. Ecol Model 470:110018

    Article  CAS  Google Scholar 

  • Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, Bengtsson-Palme J, Anslan S, Coelho LP, Harend H, Huerta-Cepas J, Medema MH, Maltz MR, Mundra S, Olsson PA, Pent M, Põlme S, Sunagawa S, Ryberg M et al (2018) Structure and function of the global topsoil microbiome. Nature 560:233–237

    Article  CAS  PubMed  Google Scholar 

  • Bai X, Dippold MA, An S, Wang B, Zhang H, Loeppmann S (2021) Extracellular enzyme activity and stoichiometry: the effect of soil microbial element limitation during leaf litter decomposition. Ecol Indic 121:107200

    Article  CAS  Google Scholar 

  • Bennett JN, Andrew B, Prescott CE (2002) Vertical fine root distributions of western redcedar, western hemlock, and salal in old-growth cedar-hemlock forests on northern Vancouver Island. Can J For Res 32:1208–1216

    Article  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthensis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  • Bonanomi G, Idbella M, Zotti M, Santorufo L, Motti R, Maisto G, De Marco A (2021) Decomposition and temperature sensitivity of fine root and leaf litter of 43 mediterranean species. Plant Soil 464:453–465

    Article  CAS  Google Scholar 

  • Börger M, Bublitz T, Dyckmans J, Wachendorf C, Joergensen RG (2022) Microbial carbon use efficiency of litter with distinct C/N ratios in soil at different temperatures, including microbial necromass as growth component. Biol Fert Soils 58:761–770

    Article  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Article  CAS  Google Scholar 

  • Brookes PC, Powlson DS, Jenkinson DS (1982) Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem 14:319–329

    Article  CAS  Google Scholar 

  • Chen J, Wang H, Hu G, Li X, Dong Y, Zhuge Y, He H, Zhang X (2021) Distinct accumulation of bacterial and fungal residues along a salinity gradient in coastal salt-affected soils. Soil Biol Biochem 158:108266

    Article  Google Scholar 

  • Cheng X, Xing W, Xiang W (2022) Depth-dependent patterns in the C: N: P stoichiometry of different soil components with reclamation time in coastal poplar plantations. Soil Tillage Res 223:105494

    Article  Google Scholar 

  • Córdova SC, Olk DC, Dietzel RN, Mueller KE, Archontouilis SV, Castellano MJ (2018) Plant litter quality affects the accumulation rate, composition, and stability of mineral-associated soil organic matter. Soil Biol Biochem 125:115–124

    Article  Google Scholar 

  • Cotrufo MF, Haddix ML, Kroeger ME, Stewart CE (2022) The role of plant input physical-chemical properties, and microbial and soil chemical diversity on the formation of particulate and mineral-associated organic matter. Soil Biol Biochem 168:108648

    Article  CAS  Google Scholar 

  • Cotrufo MF, Ranalli MG, Haddix ML, Six J, Lugato E (2019) Soil carbon storage informed by particulate and mineral-associated organic matter. Nat Geosci 12:989–994

    Article  CAS  Google Scholar 

  • Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix ML, Wall DH, Parton WJ (2015) Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat Geosci 8:776–779

    Article  CAS  Google Scholar 

  • Craig ME, Geyer KM, Beidler KV, Brzostek ER, Frey SD, Stuart Grandy A, Liang C, Phillips RP (2022) Fast-decaying plant litter enhances soil carbon in temperate forests but not through microbial physiological traits. Nat Commun 13:1–10

    Article  Google Scholar 

  • Engelking B, Flessa H, Joergensen RG (2007) Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil. Soil Biol Biochem 39:2111–2118

    Article  CAS  Google Scholar 

  • Gao D, Bai E, Wang S, Zong S, Liu Z, Fan X, Zhao C, Hagedorn F (2022) Three-dimensional mapping of carbon, nitrogen, and phosphorus in soil microbial biomass and their stoichiometry at the global scale. Glob Chang Biol 28:6728–6740

    Article  CAS  PubMed  Google Scholar 

  • Guggenberger G, Frey SD, Six J, Paustian K, Elliott ET (1999) Bacterial and fungal cell-wall residues in conventional and no-tillage agroecosystems. Soil Sci Soc Am J 63:1188–1198

    Article  CAS  Google Scholar 

  • Haddix ML, Gregorich EG, Helgason BL, Janzen H, Ellert BH, Cotrufo MF (2020) Climate, carbon content, and soil texture control the independent formation and persistence of particulate and mineral-associated organic matter in soil. Geoderma 363:114160

    Article  CAS  Google Scholar 

  • Jackson RB, Lajtha K, Crow SE, Hugelius G, Kramer MG, Piñeiro G (2017) The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu Rev Ecol Evol Syst 48:419–445

    Article  Google Scholar 

  • Jia S, Liu X, Lin W, Li X, Yang L, Sun S, Hui D, Guo J, Zou X, Yang Y (2022) Tree roots exert greater influence on soil microbial necromass carbon than above-ground litter in subtropical natural and plantation forests. Soil Biol Biochem 173:108811

    Article  CAS  Google Scholar 

  • Joergensen RG (2018) Amino sugars as specific indices for fungal and bacterial residues in soil. Biol Fertil Soils 54:559–568

    Article  CAS  Google Scholar 

  • Khan KS, Joergensen RG (2019) Stoichiometry of the soil microbial biomass in response to amendments with varying C/N/P/S ratios. Biol Fertil Soils 55:265–274

    Article  CAS  Google Scholar 

  • Khan KS, Mack R, Castillo X, Kaiser M, Joergensen R (2016) Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma 271:115–123

    Article  CAS  Google Scholar 

  • Kopittke PM, Dalal RC, Hoeschen C, Li C, Menzies NW, Mueller CW (2020) Soil organic matter is stabilized by organo-mineral associations through two key processes: the role of the carbon to nitrogen ratio. Geoderma 357:113974

    Article  CAS  Google Scholar 

  • Kou L, Jiang L, Hättenschwiler S, Zhang M, Niu S, Fu X, Dai X, Yan H, Li S, Wang H (2020) Diversity-decomposition relationships in forests worldwide. Elife 9:e55813

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmertest package: tests in linear mixed effects models. R package version 3.0-1. J Stat Softw 82:1–26

    Article  Google Scholar 

  • Lai J, Zou Y, Zhang J, Peres-Neto PR (2022) Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods Ecol Evol 13:782–788

    Article  Google Scholar 

  • Lavallee JM, Conant RT, Paul EA, Cotrufo MF (2018) Incorporation of shoot versus root- derived 13C and 15N into mineral- associated organic matter fractions: Results of a soil slurry incubation with dual- labelled plant material. Biogeochemistry 137:379–393

    Article  CAS  Google Scholar 

  • Lavallee JM, Soong JL, Cotrufo MF (2020) Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob Chang Biol 26:261–273

    Article  PubMed  Google Scholar 

  • Liang C (2020) Soil microbial carbon pump: mechanism and appraisal. Soil Ecol Lett 2:241–254

    Article  CAS  Google Scholar 

  • Liang C, Schimel JP, Jastrow JD (2017) The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol 2:17105

    Article  CAS  PubMed  Google Scholar 

  • Manzoni S, Schimel JP, Porporato A (2012) Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93:930–938

    Article  PubMed  Google Scholar 

  • McFarland JW, Waldrop MP, Strawn DG, Creamer CA, Lawrence CR, Haw MP (2019) Biological and mineralogical controls over cycling of low molecular weight organic compounds along a soil chronosequence. Soil Biol Biochem 133:16–27

    Article  CAS  Google Scholar 

  • Miltner A, Bombach P, Schmidt-Brücken B, Kästner M (2012) SOM genesis: microbial biomass as a significant source. Biogeochemistry 111:41–55

    Article  CAS  Google Scholar 

  • Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter AA (2014) Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Front Microbiol 5:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Pansu M, Gautheyrou J (2006) Handbook of Soil Analysis, Mineralogical, Organic and Inorganic Methods. Springer, pp 798–809

    Book  Google Scholar 

  • Porre RJ, van der Werf W, De Deyn GB, Stomph TJ, Hoffland E (2020) Is litter decomposition enhanced in species mixtures? A meta-analysis. Soil Biol Biochem 145:107791

    Article  CAS  Google Scholar 

  • Prescott CE, Vesterdal L (2021) Decomposition and transformations along the continuum from litter to soil organic matter in forest soils. For Ecol Manag 498:119522

    Article  Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Ridgeway JR, Morrissey EM, Brzostek ER (2022) Plant litter traits control microbial decomposition and drive soil carbon stabilization. Soil Biol Biochem 175:108857

    Article  CAS  Google Scholar 

  • Sanaei A, Yuan Z, Ali A, Loreau M, Mori AS, Reich PB, Jucker T, Lin F, Ye J, Fang S, Hao Z, Wang X (2021) Tree species diversity enhances plant-soil interactions in a temperate forest in northeast China. For Ecol Manag 491:119160

  • Schimel JP, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Front Microbiol 3:348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinsabaugh RL, Follstad Shah JJ (2012) Ecoenzymatic stoichiometry and ecological theory. Annu Rev Ecol Evol Syst 43:313–343

    Article  Google Scholar 

  • Sokol NW, Bradford MA (2019) Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat Geosci 12:46–53

    Article  CAS  Google Scholar 

  • Sun X, Tang Z, Ryan MG, You Y, Sun OJ (2019) Changes in soil organic carbon contents and fractionations of forests along a climatic gradient in China. For Ecosyst 6:1

    Article  Google Scholar 

  • Talbot JM, Treseder KK (2012) Interactions among lignin, cellulose, and nitrogen drive litter chemistry-decay relationships. Ecology 93:345–354

    Article  PubMed  Google Scholar 

  • Talbot JM, Yelle DJ, Nowick J, Treseder KK (2012) Litter decay rates are determined by lignin chemistry. Biogeochemistry 108:279–295

    Article  CAS  Google Scholar 

  • USS Working Group WRB (2015) World Reference Base for Soil Resources 2014. FAO, Rome

    Google Scholar 

  • Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597

    Article  PubMed  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Wang B, An S, Liang C, Liu Y, Kuzyakov Y (2021) Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biol Biochem 162:108422

    Article  CAS  Google Scholar 

  • Wang L, Zhou Y, Chen Y, Xu Z, Zhang J, Liu Y, Joly FX (2022) Litter diversity accelerates labile carbon but slows recalcitrant carbon decomposition. Soil Biol Biochem 168:108632

    Article  CAS  Google Scholar 

  • Wei T, Simko V (2017) R package "corrplot": visualization of a correlation matrix (Version 0.84).

  • Wichern J, Wichern F, Joergensen RG (2006) Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 137:100–108

    Article  CAS  Google Scholar 

  • Witzgall K, Vidal A, Schubert DI, Höschen C, Schweizer SA, Buegger F, Pouteau V, Chenu C, Mueller CW (2021) Particulate organic matter as a functional soil component for persistent soil organic carbon. Nat Commun 12:4115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biol Biochem 22:1167–1169

    Article  CAS  Google Scholar 

  • Xing W, Cheng X, Xiong J, Yuan H, Yu M (2020) Variations in soil biological properties in poplar plantations along coastal reclamation stages. Appl Soil Ecol 154:103649

    Article  Google Scholar 

  • Xu H, Zhu B, Wei X, Yu M, Cheng X (2021) Root functional traits mediate rhizosphere soil carbon stability in a subtropical forest. Soil Biol Biochem 162:108431

    Article  CAS  Google Scholar 

  • Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Peñuelas J, Richter A, Sardans J, Wanek W (2015) The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecol Monogr 85:133–155

    Article  Google Scholar 

  • Zhang X, Amelung W (1996) Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biol Biochem 28:1201–1206

    Article  CAS  Google Scholar 

  • Zhang Y, Zheng N, Wang J, Yao H, Qiu Q, Chapman SJ (2019) High turnover rate of free phospholipids in soil confirms the classic hypothesis of PLFA methodology. Soil Biol Biochem 135:323–330

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Peng Ding and Jing Fan for their assistance with field sampling and for their insightful suggestions.

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 31870596).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangrong Cheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 18.6 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Xing, W. & Liu, J. Litter chemical traits, microbial and soil stoichiometry regulate organic carbon accrual of particulate and mineral-associated organic matter. Biol Fertil Soils 59, 777–790 (2023). https://doi.org/10.1007/s00374-023-01746-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-023-01746-0

Keywords

Navigation