Skip to main content
Log in

An atypical distribution of lactate dehydrogenase isoenzymes in the hooded seal (Cystophora cristata) brain may reflect a biochemical adaptation to diving

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The brains of some diving mammals can withstand periods of severe hypoxia without signs of deleterious effects. This may in part be due to an enhanced cerebral capacity for anaerobic energy production. Here, we have tested this hypothesis by comparing various parameters of the lactate dehydrogenase (LDH) in the brain of the hooded seal (Cystophora cristata) with those in the brains of the ferret (Mustela putorius furo) and mouse (Mus musculus). We found that mRNA and protein expression of lactate dehydrogenase a (LDHA) and lactate dehydrogenase b (LDHB), and also the LDH activity were significantly higher in the ferret brain than in brains of the hooded seal and the mouse (p < 0.0001). No conspicuous differences in the LDHA and LDHB sequences were observed. There was also no difference in the buffering capacities of the brains. Thus, an enhanced capacity for anaerobic energy production likely does not explain the higher hypoxia tolerance of the seal brain. However, the brain of the hooded seal had higher relative levels of LDHB isoenzymes (LDH1 and LDH2) compared to the non-diving mammals. Moreover, immunofluorescence studies showed more pronounced co-localization of LDHB and glial fibrillary acidic protein in the cortex of the hooded seal. Since LDHB isoenzymes primarily catalyze the conversion of lactate to pyruvate, this finding suggests that the contribution of astrocytes to the brain aerobic metabolism is higher in the hooded seal than in non-diving species. The cerebral tolerance of the hooded seal to hypoxia may therefore partly rely on different LDH isoenzymes distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ANLS:

Astrocyte–neuron lactate shuttle

BSA:

Bovine serum albumin

CDS:

Coding sequence

Cyt c:

Cytochrome c

GFAP:

Glial fibrillary acidic protein

IgG:

Immunoglobulin G

LDH:

Lactate dehydrogenase

NBT:

Nitroblue tetrazolium

Ngb:

Neuroglobin

NGS:

Normal goat serum

PBS:

Phosphate buffered saline

PMS:

Phenazine methosulfate

References

  • Bergmeyer H-U, Bernt E, Hess B (1965) Lactic dehydrogenase. In: Bergmeyer H-U (ed) Methods of enzymatic analysis. Academic Press, New York, London, pp 736–743

    Chapter  Google Scholar 

  • Bittar PG, Charnay Y, Pellerin L, Bouras C, Magistretti PJ (1996) Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J Cereb Blood Flow Metab 16:1079–1089

    Article  CAS  PubMed  Google Scholar 

  • Blix A, From S (1971) Lactate dehydrogenase in diving animals—A comparative study with special reference to the eider (Somateria mollissima). Comp Biochem Physiol B: Comp Biochem 40:579–584

    Article  CAS  Google Scholar 

  • Blix AS, Walløe L, Messelt EB, Folkow LP (2010) Selective brain cooling and its vascular basis in diving seals. J Exp Biol 213:2610–2616

    Article  PubMed  Google Scholar 

  • Burmester T, Hankeln T (2014) Function and evolution of vertebrate globins. Acta Physiol (Oxf) 211:501–514

    Article  CAS  Google Scholar 

  • Cahn RD, Kaplan NO, Levine L, Zwilling E (1969) Nature and development of lactic dehydrogenases. Science 136:962–969

    Article  Google Scholar 

  • Castellini M, Somero G (1981) Buffering capacity of vertebrate muscle: correlations with potentials for anaerobic function. J Comp Physiol 143:191–198

    CAS  Google Scholar 

  • Castellini M, Somero G, Kooyman G (1981) Glycolytic enzyme activities in tissues of marine and terrestrial mammals. Physiol Zool 54:242–252

    Article  CAS  Google Scholar 

  • Czech-Damal NU, Geiseler SJ, Hoff ML, Schliep R, Ramirez JM, Folkow LP, Burmester T (2014) The role of glycogen, glucose and lactate in neuronal activity during hypoxia in the hooded seal (Cystophora cristata) brain. Neuroscience 275:374–383

    Article  CAS  PubMed  Google Scholar 

  • Davis RW (2014) A review of the multi-level adaptations for maximizing aerobic dive duration in marine mammals: from biochemistry to behavior. J Comp Physiol B 184:23–53

    Article  PubMed  Google Scholar 

  • Dienel GA (2012) Brain lactate metabolism: the discoveries and the controversies. J Cereb Blood Flow Metab 32:1107–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doppenberg EM, Zauner A, Watson JC, Bullock R (1998) Determination of the ischemic threshold for brain oxygen tension. Acta Neurochir Suppl 71:166–169

    CAS  PubMed  Google Scholar 

  • Elsner R, Shurley JT, Hammond DD, Brooks RE (1970) Cerebral tolerance to hypoxemia in asphyxiated Weddell seals. Respir Physiol 9:287–297

    Article  CAS  PubMed  Google Scholar 

  • Emmett B, Hochachka P (1981) Scaling of oxidative and glycolytic enzymes in mammals. Respir Physiol 45:261–272

    Article  CAS  PubMed  Google Scholar 

  • Folkow LP, Ramirez JM, Ludvigsen S, Ramirez N, Blix AS (2008) Remarkable neuronal hypoxia tolerance in the deep-diving adult hooded seal (Cystophora cristata). Neurosci Lett 446:147–150

    Article  CAS  PubMed  Google Scholar 

  • Haddad GG, Jiang C (1993) O2 deprivation in the central nervous system: on mechanisms of neuronal response, differential sensitivity and injury. Prog Neurobiol 40:277–318

    Article  CAS  PubMed  Google Scholar 

  • Heinova D, Blahovec J, Rosival I (1996) Lactate dehydrogenase isoenzyme patterns in bird, carp and mammalian sera. Eur J Clin Chem Clin Biochem 34:91–95

    CAS  PubMed  Google Scholar 

  • Hermes-Lima M, Moreira DC, Rivera-Ingraham G, Giraud-Billoud M, Genaro-Mattos TC, Campos ÉG (2015) Preparation for oxidative stress under hypoxia and metabolic depression: revisiting the proposal two decades later. Free Radic Biol Med (in press)

  • Howarth C, Gleeson P, Attwell D (2012) Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab 32:1222–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan NO, Everse J, Admiraal J (1968) Significance of substrate inhibition of dehydrogenases. Ann NY Acad Sci 151:400–412

    Article  CAS  PubMed  Google Scholar 

  • Katsura K, Mellergåard P, Theander S, Y-b O, Siesjö BK (1993) Buffer capacity of rat cortical tissue as well as of cultured neurons and astrocytes. Brain Res 618:283–294

    Article  CAS  PubMed  Google Scholar 

  • Kerem D, Elsner R (1973) Cerebral tolerance to asphyxial hypoxia in the harbor seal. Respir Physiol 19:188–200

    Article  CAS  PubMed  Google Scholar 

  • Krieg AF, Rosenblum LJ, Henry JB (1967) Lactate dehydrogenase isoenzymes: a comparison of pyruvate-to-lactate and lactate-to-pyruvate assays. J Chromatogr B Biomed Sci Appl 13:196–203

    CAS  Google Scholar 

  • Larson J, Drew KL, Folkow LP, Milton SL, Park TJ (2014) No oxygen? No problem! Intrinsic brain tolerance to hypoxia in vertebrates. J Exp Biol 217:1024–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludvigsen S, Folkow LP (2009) Differences in in vitro cerebellar neuronal responses to hypoxia in Eider ducks, chicken and rats. J Comp Physiol A 195:1021–1030

    Article  Google Scholar 

  • Markert CL (1963) Lactate dehydrogenase isozymes: dissociation and recombination of subunits. Science 140:1329–1330

    Article  CAS  PubMed  Google Scholar 

  • Markert C, Ursprung H (1962) The ontogeny of isozyme patterns of lactate dehydrogenase in the mouse. Dev Biol 381:363–381

    Article  Google Scholar 

  • Meir JU, Ponganis PJ (2009) High-affinity hemoglobin and blood oxygen saturation in diving emperor penguins. J Exp Biol 212:3330–3338

    Article  CAS  PubMed  Google Scholar 

  • Mitz SA, Reuss S, Folkow LP, Blix AS, Ramirez JM, Hankeln T, Burmester T (2009) When the brain goes diving: glial oxidative metabolism may confer hypoxia tolerance to the seal brain. Neuroscience 163:552–560

    Article  CAS  PubMed  Google Scholar 

  • Murphy B, Zapol WM, Hochachka PW (1980) Metabolic activities of heart, lung, and brain during diving and recovery in the Weddell seal. J Appl Physiol Respir Environ Exerc Physiol 48:596–605

    CAS  PubMed  Google Scholar 

  • Newington JT, Harris RA, Cumming RC (2013) Reevaluating metabolism in Alzheimer’s disease from the perspective of the astrocyte–neuron lactate shuttle model. J Neurodegener Dis 2013:234572

    PubMed  PubMed Central  Google Scholar 

  • Noren S (2004) Buffering capacity of the locomotor muscle in cetaceans: correlates with postpartum development, dive duration, and swim performance. Mar Mammal Sci 20:808–822

    Article  Google Scholar 

  • O’Brien J, Kla KM, Hopkins IB, Ea M, McKenna MC (2007) Kinetic parameters and lactate dehydrogenase isozyme activities support possible lactate utilization by neurons. Neurochem Res 32:597–607

    Article  PubMed  Google Scholar 

  • Odden A, Folkow LP, Caputa M, Hotvedt R, Blix AS (1999) Brain cooling in diving seals. Acta Physiol Scand 166:77–78

    Article  CAS  PubMed  Google Scholar 

  • Pellerin L (2005) How astrocytes feed hungry neurons. Mol Neurobiol 32:59–72

    Article  CAS  PubMed  Google Scholar 

  • Pellerin L (2010) Food for thought: the importance of glucose and other energy substrates for sustaining brain function under varying levels of activity. Diabetes Metab 36(Suppl 3):S59–S63

    Article  CAS  PubMed  Google Scholar 

  • Pellerin L, Magistretti PJ (2003) Food for thought: challenging the dogmas. J Cereb Blood Flow Metab 23:1282–1286

    Article  PubMed  Google Scholar 

  • Ramirez JM, Folkow LP, Blix AS (2007) Hypoxia tolerance in mammals and birds: from the wilderness to the clinic. Annu Rev Physiol 69:113–143

    Article  CAS  PubMed  Google Scholar 

  • Ramirez JM, Folkow LP, Ludvigsen S, Ramirez PN, Blix AS (2011) Slow intrinsic oscillations in thick neocortical slices of hypoxia tolerant deep diving seals. Neuroscience 177:35–42

    Article  CAS  PubMed  Google Scholar 

  • Rolfe D, Brown G (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77:731–758

    CAS  PubMed  Google Scholar 

  • Schneuer M, Flachsbarth S, Czech-Damal NU, Folkow LP, Siebert U, Burmester T (2012) Neuroglobin of seals and whales: evidence for a divergent role in the diving brain. Neuroscience 223:35–44

    Article  CAS  PubMed  Google Scholar 

  • Scholander PF (1940) Experimantal investigations on the respiratory function in diving mammals and birds. Hvalradets Skr 22:1–131

    Google Scholar 

  • Schousboe I, Tonder N, Zimmer J, Schousboe A (1993) A developmental study of lactate dehydrogenase isozyme and aspartate aminotransferase activity in organotypic rat hippocampal slice cultures and primary cultures of mouse neocortical and cerebellar neurons. Int J Dev Neurosci 11:765–772

    Article  CAS  PubMed  Google Scholar 

  • Somero GN, Childress JJ (1990) Scaling of ATP-supplying enzymes, myofibrillar proteins and buffering capacity in fish muscle: relationship to locomotory habit. J Exp Biol 149:319–333

    CAS  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol (Lond) 552:335–344

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES/Brazil) and the German Academic Exchange Service (DAAD/Germany) to MLMH (PhD scholarship #5125-11/1) and by the Deutsche Forschungsgemeinschaft to TB (Bu956/12). We thank the crew of RV Helmer Hanssen and Erling Nordøy, Samuel Geiseler and Mario Acquarone for their help in collecting hooded seal brain samples; Gerhard Engler for the ferret brain samples; Christian Lohr and Daniela Hirnet for the mice samples and help with histology; Marco Schneuer, Nicole Czech-Damal, Bettina Zeis, and Michael Berenbrink for discussions; and Janus Borner, Maria Machola, and Michelle Kruse for their help with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Burmester.

Additional information

Communicated by G. Heldmaier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoff, M.L.M., Fabrizius, A., Folkow, L.P. et al. An atypical distribution of lactate dehydrogenase isoenzymes in the hooded seal (Cystophora cristata) brain may reflect a biochemical adaptation to diving. J Comp Physiol B 186, 373–386 (2016). https://doi.org/10.1007/s00360-015-0956-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-015-0956-y

Keywords

Navigation