Skip to main content
Log in

A review of the multi-level adaptations for maximizing aerobic dive duration in marine mammals: from biochemistry to behavior

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Marine mammals exhibit multi-level adaptations, from cellular biochemistry to behavior, that maximize aerobic dive duration. A dive response during aerobic dives enables the efficient use of blood and muscle oxygen stores, but it is exercise modulated to maximize the aerobic dive limit at different levels of exertion. Blood volume and concentrations of blood hemoglobin and muscle myoglobin are elevated and serve as a significant oxygen store that increases aerobic dive duration. However, myoglobin is not homogeneously distributed in the locomotory muscles and is highest in areas that produce greater force and consume more oxygen during aerobic swimming. Muscle fibers are primarily fast and slow twitch oxidative with elevated mitochondrial volume densities and enhanced oxidative enzyme activities that are highest in areas that produce more force generation. Most of the muscle mitochondria are interfibriller and homogeneously distributed. This reduces the diffusion distance between mitochondria and helps maintain aerobic metabolism under hypoxic conditions. Mitochondrial volume densities and oxidative enzyme activities are also elevated in certain organs such as liver, kidneys, and stomach. Hepatic and renal function along with digestion and assimilation continue during aerobic dives to maintain physiological homeostasis. Most ATP production comes from aerobic fat metabolism in carnivorous marine mammals. Glucose is derived mostly from gluconeogenesis and is conserved for tissues such as red blood cells and the central nervous system. Marine mammals minimize the energetic cost of swimming and diving through body streamlining, efficient, lift-based propulsive appendages, and cost-efficient modes of locomotion that reduce drag and take advantage of changes in buoyancy with depth. Most dives are within the animal’s aerobic dive limit, which maximizes time underwater and minimizes recovery time at the surface. The result of these adaptations is increased breath-hold duration and enhanced foraging ability that maximizes energy intake and minimizes energy output while making aerobic dives to depth. These adaptations are the long, evolutionary legacy of an aquatic lifestyle that directly affects the fitness of marine mammal species for different diving abilities and environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

ADL:

Aerobic dive limit

ATP:

Adenosine triphosphate

BM:

Body mass

BV:

Body volume

CS:

Citrate synthase

DVL:

Diving lung volume

FFA:

Free fatty acids

GFR:

Glomerular filtration rate

HOAD:

β-Hydroxyacyl coenzyme A dehydrogenase

Hb:

Hemoglobin

kPa:

Kilopascal

LDH:

Lactate dehydrogenase

MCV:

Mean cell volume

MCH:

Mean cell hemoglobin

Mb:

Myoglobin

O2 :

Oxygen

P 50 :

Oxygen partial pressure at 50 % saturation

PO2 :

Partial pressure of oxygen

RMR:

Resting metabolic rate

RPF:

Renal plasma flow

RQ:

Respiratory quotient (ratio of carbon dioxide produced by tissue metabolism to oxygen consumed)

TG:

Triglycerides

TGFA:

Triglyceride fatty acids

VDR:

Video and data recorder

VLDL:

Very low-density lipoproteins

VLDL-TGFA:

Very low-density lipoprotein triglyceride fatty acids

\( \dot{V}{\text{O}}_{2} \) :

Rate of oxygen consumption (ml O2 min−1 kg−1)

\( \dot{V}{\text{O}}_{2\hbox{max} } \) :

Maximum aerobic capacity

References

  • Adams SH, Costa DP (1993) Water conservation and protein metabolism in northern elephant seal pups during the postweaning fast. J Comp Physiol B 163:367–373

    CAS  PubMed  Google Scholar 

  • Alsina-Guerrero MM (2011) Blood values from wild and rehabilitating Antillean manatees (Trichechus manatus manatus) from Puerto Rico. Master’s Thesis, Western Illinois University

  • Andersen HT (1966) Physiological adaptations in diving vertebrates. Physiol Rev 46:212–243

    CAS  PubMed  Google Scholar 

  • Andrews RD, Jones DR, Williams JD, Thorson PH, Oliver GW, Costa DP, Le Boeuf BJ (1997) Heart rates of northern elephant seals diving at sea and resting on the beach. J Exp Biol 200:2083–2095

    CAS  PubMed  Google Scholar 

  • Bert P (1870) Lecons Sur La Physiologie Comparee De La Respiration. In: Bailliere JB et Fils (ed) Paris. 1870, p 526–553

  • Bevan RM, Butler PJ (1992) Cardiac output and blood flow distribution during swimming and voluntary diving of the tufted duck (Aythya fuligula). J Exp Biol 168:199–217

    Google Scholar 

  • Blazquez E, Castro M, Herrera E (1971) Effect of a high-fat diet on pancreatic insulin release, glucose tolerance and hepatic gluconeogenesis in male rats. Rev Espan Fisiol 27:297–304

    CAS  PubMed  Google Scholar 

  • Blix AS, Folkow B (1983) Cardiovascular adjustments to diving in mammals and birds. In: Shepherd JT, Abboud FM (eds) Handbook of physiology: the cardiovascular system, section 2. Am Physiol Soc, Bethesda, pp 917–945

    Google Scholar 

  • Bowen WD, Tully D, Boness DJ, Bulheier BM, Marshall GJ (2002) Prey-dependent foraging tactics and prey profitability in a marine mammal. Mar Ecol Prog Ser 244:235–245

    Google Scholar 

  • Bradley SE, Bing RS (1942) Renal function in the Harbor seal (Phoca vitulina) during asphyxial ischemia and pyrogenic hyperemia. J Cell Comp Physiol 19:229–237

    CAS  Google Scholar 

  • Bradley SE, Mudge GH, Blake WD (1954) The renal excretion of sodium, potassium, and water by the harbor seal (Phoca vitulina): effect of apnea; sodium, potassium, and water loading; pitressin; and mercurial diuresis. J Cell Comp Physiol 43:1–22

    CAS  Google Scholar 

  • Bron KM, Murdaugh HV, Millen JE, Lenthall R, Raskin P, Robin ED (1966) Arterial constrictor response in a diving mammal. Science 152:540–543

    CAS  PubMed  Google Scholar 

  • Burmester T, Ebner B, Weich B, Hankeln T (2002) Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Mol Biol Evol 19:416–421

    CAS  PubMed  Google Scholar 

  • Burns JM, Costa DP, Frost K, Harvey JT (2005) Development of body oxygen stores in harbor seals: effects of age, mass and body composition. Physiol Biochem Zool 78:1057–1068

    CAS  PubMed  Google Scholar 

  • Burns JM, Lestyk KC, Folkow LP, Hammill MO, Blix AS (2007) Size and distribution of oxygen stores in harp and hooded seals from birth to maturity. J Comp Physiol B 177:687–700

    CAS  PubMed  Google Scholar 

  • Butler PJ (1988) The exercise response and the “classical” diving response during natural submersion in birds and mammals. Can J Zool 66:29–39

    Google Scholar 

  • Butler PJ, Jones DR (1982) The comparative physiology of diving in vertebrates. Adv Comp Physiol Biochem 8:179–364

    CAS  PubMed  Google Scholar 

  • Butler PJ, Jones DR (1997) Physiology of diving of birds and mammals. Physiol Rev 77:837–899

    CAS  PubMed  Google Scholar 

  • Butler PJ, Woakes AJ, Boyd IL, Kanatous S (1992) Relationship between heart rate and oxygen consumption during steady-state swimming in California sea lions. J Exp Biol 170:35–42

    CAS  PubMed  Google Scholar 

  • Cabanac A, Folkow LP, Blix AS (1997) Volume capacity and contraction control of the seal spleen. J Appl Physiol 82:1989–1994

    CAS  PubMed  Google Scholar 

  • Cabanac AJ, Messelt EB, Folkow LP, Blix AS (1999) The structure and blood-storing function of the spleen of the hooded seal (Cystophora cristata). J Zool Lond 248:75–81

    Google Scholar 

  • Castellini MA (1985) Closed systems: resolving potentially conflicting demands of diving and exercise in marine mammals. In: Gilles R (ed) Circulation, respiration and metabolism current comparative approaches. Springer-Verlag, Berlin, pp 219–226

    Google Scholar 

  • Castellini MA (2012) Life under water: physiological adaptations to diving and living at sea. Compr Physiol 2:1889–1919

    PubMed  Google Scholar 

  • Castellini MA, Castellini JM (2004) Defining the limits of diving biochemistry in marine mammals. Comp Biochem Physiol B 139:509–518

    PubMed  Google Scholar 

  • Castellini MA, Somero GN, Kooyman GL (1981) Glycolytic enzyme activities in tissue of marine and terrestrial mammals. Physiol Zool 54:242–252

    Google Scholar 

  • Castellini MA, Murphy BJ, Fedak M, Ronald K, Gofton N, Hochachka PW (1985) Potentially conflicting metabolic demands of diving and exercise in seals. J Appl Physiol 58:392–399

    CAS  PubMed  Google Scholar 

  • Castellini MA, Costa DP, Huntley AC (1987) Fatty acid metabolism in fasting elephant seal pups. J Comp Physiol B 157:445–449

    CAS  PubMed  Google Scholar 

  • Castellini MA, Davis RW, Kooyman GL (1988) Blood chemistry regulation during repetitive dives in Weddell seals. Physiol Zool 61:379–386

    Google Scholar 

  • Castellini MA, Kooyman GL, Ponganis PJ (1992) Metabolic rates of freely diving Weddell seals: correlations with oxygen stores, swim velocity and diving duration. J Exp Biol 165:181–194

    CAS  PubMed  Google Scholar 

  • Castellini M, Elsner R, Baskurt OK, Wenby RB, Meiselman HJ (2006) Blood rheology of Weddell seals and bowhead whales. Biorheology 43:57–69

    PubMed  Google Scholar 

  • Champagne CD, Houser DS, Crocker DE (2005) Glucose production and substrate cycle activity in a fasting adapted animal, the northern elephant seal. J Exp Biol 208:859–868

    CAS  PubMed  Google Scholar 

  • Champagne CD, Houser DS, Crocker DE (2006) Glucose metabolism during lactation in a fasting animal, the northern elephant seal. Am J Physiol 291:R1129–R1137

    CAS  Google Scholar 

  • Champagne CD, Houser DS, Fowler MA, Costa DP, Crocker DE (2012) Gluconeogenesis is associated with high rates of tricarboxylic acid and pyruvate cycling in fasting northern elephant seals. Am J Physiol 303:R340–R352

    CAS  Google Scholar 

  • Clark CA, Burns JM, Schreer JF, Hammill MO (2007) A longitudinal and cross-sectional analysis of total body oxygen store development in nursing harbor seals (Phoca vitulina). J Comp Physiol 177:217–227

    Google Scholar 

  • Condit RS, Ortiz CL (1987) The physiological transition from fasting to feeding in weaned elephant seal pups. Mar Mam Sci 3:207–219

    Google Scholar 

  • Conley KE, Kayar SR, Rosler K, Hoppler H, Weibel ER, Taylor CR (1987) Adaptive variation in the mammalian respiratory system in relation to energetic demand: IV. Capillaries and their relationship to oxidative capacity. Res Physiol 69:47–64

    Google Scholar 

  • Cowan DF, Smith TL (1999) Morphology of the lymphoid organs of the bottlenose dolphin, Tursiops truncatus. J Anat 194:505–517

    PubMed  Google Scholar 

  • Crocker DE, Webb PM, Costa DP, Le Boeuf BJ (1998) Protein catabolism and renal function in lactating northern elephant seals. Physiol Zool 71:485–491

    CAS  PubMed  Google Scholar 

  • Dasmeh P, Davis RW, Kepp KP (2013) Aerobic dive limits of seals with mutant myoglobin using combined thermochemical and physiological data. Comp Biochem Physiol A 164:119–128

    CAS  Google Scholar 

  • Davis RW (1983) Lactate and glucose metabolism in the resting and diving harbor seal (Phoca vitulina). J Comp Physiol 153:275–288

    CAS  Google Scholar 

  • Davis RW, Kanatous SB (1999) Convective oxygen transport and tissue oxygen consumption in Weddell seals during aerobic dives. J Exp Biol 202:1091–1113

    CAS  PubMed  Google Scholar 

  • Davis RW, Weihs D (2007) Locomotion in deep diving elephant seals: physical and physiological constraints. Phil Trans R Soc B 362:2141–2150

    CAS  PubMed  Google Scholar 

  • Davis RW, Williams TM (2012) The dive response is exercise modulated to maximize aerobic dive duration. J Comp Physiol A 198:583–591

    Google Scholar 

  • Davis RW, Castellini MA, Kooyman GL, Maue R (1983) Renal glomerular filtration rate and hepatic blood flow during voluntary dives in Weddell seals. Am J Phys 245:R743–R748

    CAS  Google Scholar 

  • Davis RW, Castellini MA, Kooyman GL (1991a) Fuel homeostasis in harbor seals during submerged swimming. J Comp Physiol 160:627–635

    CAS  Google Scholar 

  • Davis RW, Pierotti VR, Lauer SJ, Hubl ST, McLean JW, Witztum JL, Young SG (1991b) Lipoproteins in pinnipeds: analysis of a high molecular weight form of apolipoprotein E. J Lipid Res 32:1013–1023

    CAS  PubMed  Google Scholar 

  • Davis RW, Beltz WF, Peralta F, Witztum JL (1993) Role of plasma and tissue lipids in the energy metabolism of the harbour seal. Symp Zool Soc Lond 66:369–382

    Google Scholar 

  • Davis RW, Fuiman L, Williams TM, Collier S, Hagey W, Kanatous SB, Kohin S, Horning M (1999) Hunting behavior of marine mammal beneath the Antarctic fast-ice. Science 283:993–996

    CAS  PubMed  Google Scholar 

  • Davis RW, Fuiman L, Williams TM, Le Boeuf BJ (2001) Three-dimensional movements and swimming activity of a female northern elephant seal. Comp Biochem Physiol A 129:759–770

    CAS  Google Scholar 

  • Davis RW, Fuiman LA, Williams TM, Horning M, Hagey W (2003) Classification of Weddell seal dives based on three-dimensional movements and video recorded observations. Mar Ecol Prog Ser 264:109–122

    Google Scholar 

  • Davis RW, Madden K, Fuiman LA, Williams TM (2013) Classification and behavior of free-ranging Weddell seal dives based on three-dimensional movements and video-recorded observations. Deep Sea Res II 88:65–77

    Google Scholar 

  • Dhindsa DS, Metcalfe J, Hoversland AS, Hartman RA (1974) Comparative studies of the respiratory functions of mammalian blood X. Killer whale (Orcinus orca linnaeus) and beluga whale (Delphinapterus leucas). Resp Physiol 20:93–103

    CAS  Google Scholar 

  • Dolar MLL, Suarez P, Ponganis PJ, Kooyman GL (1999) Myoglobin in pelagic small cetaceans. J Exp Biol 202:227–236

    CAS  PubMed  Google Scholar 

  • Edwards NA (1975) Scaling of renal functions in mammals. Comp Biochem Physiol 53:63–66

    Google Scholar 

  • Eisenstein AB, Strack I, Steiner A (1974) Increased hepatic gluconeogenesis without a rise of glucagon secretion in rats fed a high fat diet. Diabetes 23:869–875

    CAS  PubMed  Google Scholar 

  • Elsner R, Gooden B (1983) Diving and asphyxia. Cambridge University Press, Cambridge, pp 1–59

    Google Scholar 

  • Elsner R, Franklin DL, Van Citters RL (1964) Cardiac output during diving in an unrestrained sea lion. Nature 202:809–810

    CAS  PubMed  Google Scholar 

  • Elsner R, Øyasæter S, Almaas R, Saugstad OD (1998) Diving seals, ischemia–reperfusion and oxygen radicals. Comp Biochem Physiol A 119:975–980

    CAS  Google Scholar 

  • Fedak MA (1986) Diving and exercise in seals: A benthic perspective. In: Sundnes G, Brubakk AO, Kanwisher JW (eds) Diving in animals and man. Trondheim, Tapir, pp 11–32

    Google Scholar 

  • Fish FE (1996) Transitions from drag-based to lift-based propulsion in mammalian swimming. Amer Zool 36:628–641

    Google Scholar 

  • Fish FE (2000) Biomechanics and energetics in aquatic and semiaquatic mammals: platypus to whale. Physiol Biocheml Zool 73:683–698

    CAS  Google Scholar 

  • Folkow LP, Blix AS (1999) Diving behaviour of hooded seals (Cystophora cristata) in the Greenland and Norwegian Seas. Polar Biol 22:61–74

    Google Scholar 

  • Folkow LP, Nordøy ES, Blix AS (2004) Distribution and diving behaviour of harp seals (Pagophilus groenlandicus) from the Greenland Sea stock. Polar Biol 27:281–298

    Google Scholar 

  • Fowler SL, Costa DP, Arnould JPY, Gales NJ, Burns JM (2007) Ontogeny of oxygen stores and physiological diving capability in Australian sea lions. Funct Ecol 21:922–935

    Google Scholar 

  • Fuiman LA, Madden KM, Williams TM, Davis RW (2007) Structure of foraging dives by Weddell seals at an offshore isolated hole in the Antarctic fast-ice environment. Deep Sea Res II 54:270–289

    Google Scholar 

  • Fuson AL, Cowan DF, Kanatous SB, Polasek LK, Davis RW (2003) Adaptations to diving hypoxia in the heart, kidneys and splanchnic organs of harbor seals (Phoca vitulina). J Exp Biol 206:4139–4154

    PubMed  Google Scholar 

  • Gallivan GJ, Best RC (1980) Metabolism and respiration of the Amazonian manatee (Trichechus inunguis). Physiol Zool 53:245–253

    Google Scholar 

  • George JC, Vallyathan NV, Ronald K (1971) The harp seal Pagophilus groenlandicus (Erxleben, 1777). VII. A histophysiological study of certain skeletal muscles. Can J Zool 49:25–30

    CAS  PubMed  Google Scholar 

  • Gordon MS, Boetius I, Evans DH, McCarthy R, Oglesby LC (1969) Aspects of the physiology of terrestrial life in amphibious fishes. J Exp Biol 50:141–149

    Google Scholar 

  • Greaves DK, Hughson RL, Topor Z, Schreer JF, Burns JM, Hammill MO (2004) Changes in heart rate variability during diving in young harbor seals, Phoca vitulina. Mar Mam Sci 20:861–871

    Google Scholar 

  • Guppy M, Hill RD, Schneider RC, Qvist J, Liggins GC, Zapol WM, Hochachka PW (1986) Microcomputer-assisted metabolic studies of voluntary diving of Weddell seals. Am J Physiol 250:R175–R187

    CAS  PubMed  Google Scholar 

  • Guyton GP, Stanek KS, Schneider RC, Hochachka PW, Hurford WE, Zapol DG, Liggins GC, Zapol WM (1995) Myoglobin saturation in free-diving Weddell seals. J Appl Physiol 79:1148–1155

    CAS  PubMed  Google Scholar 

  • Halasz NA, Elsner R, Garvie RS, Grotke GT (1974) Renal recovery from ischemia: a comparative study of harbor seal and dog kidneys. Am J Physiol 227:1331–1335

    CAS  PubMed  Google Scholar 

  • Hall FG, Dill DB, Guzman B (1936) Comparative physiology in high altitudes. J Cell Comp Physiol 8:301–313

    CAS  Google Scholar 

  • Harcourt RG, Kingston JJ, Waas JR, Hindell MA (2008) Foraging while breeding: alternative mating strategies by male Weddell seals? Aqua Conserv Mar Freshwater Ecosys 17:68–78

    Google Scholar 

  • Hart JS, Irving L (1959) The energetics of harbor seals in air and water with special consideration of seasonal changes. Can J Zool 37:447–457

    Google Scholar 

  • Heithaus MR, Marshall GJ, Buhleier BM, Dill LM (2001) Employing Crittercam to study habitat use and behavior of large sharks. Mar Ecol Prog Ser 209:307–310

    Google Scholar 

  • Hiatt EP, Hiatt RB (1942) The effect of food on the glomerular filtration rate and renal blood flow in the harbor seal (Phoca vitulina). J Cell Comp Physiol 19:221–227

    CAS  Google Scholar 

  • Hill RD, Schneider RC, Liggins GC, Schuette AH, Elliott RL, Guppy M, Hochachka PW, Qvist J, Falke KJ, Zapol WM (1987) Heart rate and body temperature during free diving of Weddell seals. Am J Physiol 253:R344–R351

    CAS  PubMed  Google Scholar 

  • Hindell MADJ, Slip HR, Bryden MM (1992) Physiological implications of continuous, prolonged and deep dives of the southern elephant seal (Mirounga leonina). Can J Zool 70:370–379

    Google Scholar 

  • Hindell MA, Harcourt R, Waas JR, Thompson D (2002) Fine-scale three-dimensional spatial use by diving, lactating female Weddell seals Leptonychotes Weddellii. Mar Ecol Prog Ser 242:275–284

    Google Scholar 

  • Hochachka PW (1976) Design of metabolic and enzymatic machinery to fit lifestyle and environment. Biochem Soc Symp 41:3–31

    CAS  PubMed  Google Scholar 

  • Hochachka PW (1981) Brain, lung, and heart functions during diving and recovery. Science 212:509–514

    CAS  PubMed  Google Scholar 

  • Hoogewijs D, Ebner B, Germani F, Hoffmann FG, Fabrizius A, Moens L, Burmester T, Dewilde S, Storz JF, Vinogradov SN, Hankeln T (2012) Androglobin: a chimeric globin in metazoans that is preferentially expressed in Mammalian testes. Mol Biol Evol 4:4–1105

    Google Scholar 

  • Hooker SK, Boyd IL, Jessop M, Cox O, Blackwell J, Boveng PL, Bengtson JL (2002) Monitoring the prey-field of marine predators: combining digital imaging with data logging tags. Mar Mam Sci 18:680–697

    Google Scholar 

  • Hoppeler H, Kayar SR, Claassen H, Uhlmann E, Karas RH (1987) Adaptive variation in the mammalian respiratory system in relation to energetic demand. III. Skeletal muscles set the demand for oxygen. Respir Physiol 69:27–46

    Google Scholar 

  • Horowitz JF, Klein S (2000) Lipid metabolism during endurance exercise. Am J Clin Nutr 72:558–563

    Google Scholar 

  • Houser DS, Costa DP (2001) Protein catabolism in suckling and fasting northern elephant seal pups (Mirounga angustirostris). J Comp Physiol B 171:635–642

    CAS  PubMed  Google Scholar 

  • Houser DS, Champagne CD, Crocker DE (2007) Lipolysis and glycerol gluconeogenesis in simultaneously fasting and lactating northern elephant seals. Am J Physiol 293:R2376–R2381

    CAS  Google Scholar 

  • Hurford WE, Hochachka PW, Schneider RC, Guyton GP, Stanek KS, Zapol DG, Liggins GC, Zapol WM (1996) Splenic contraction, catecholamine release, and blood volume redistribution during diving in the Weddell seal. J Appl Physiol 80:298–306

    CAS  PubMed  Google Scholar 

  • Irving L (1933) On the ability of mammals to survive without breathing. Collect Net 8:138–141

    Google Scholar 

  • Irving L (1938) Changes in the blood flow through the brain and muscles during the arrest of breathing. Am J Physiol 122:207–214

    Google Scholar 

  • Irving L (1939a) Respiration in diving mammals. Physiol Rev 19:112–134

    Google Scholar 

  • Irving L (1939b) Changes m blood flow through the brain and muscle during arrest of breathing. Am J Physiol 122:207–214

    Google Scholar 

  • Irving L, Solandt OM, Solandt DY, Fisher KC (1935) The respiratory metabolism of the seal and its adjustments to diving. J Cell Comp Physiol 7:137–151

    Google Scholar 

  • Irving L, Scholander PF, Grinnell SW (1941a) Significance of the heart rate to the diving ability of seals. J Cell Comp Physiol 18:283–297

    CAS  Google Scholar 

  • Irving L, Scholander PF, Grinnell SW (1941b) The respiration of the porpoise, Tursiops truncatus. J Cell Comp Physiol 17:145–168

    CAS  Google Scholar 

  • Irving L, Scholander PF, Grinnell SW (1942) The regulation of arterial blood pressure in the seal during diving. Am J Physiol 135:557–566

    Google Scholar 

  • Jobsis PD, Ponganis PJ, Kooyman GL (2001) Effects of training on forced submersion responses in harbor seals. J Exp Biol 204:3877–3885

    CAS  PubMed  Google Scholar 

  • Johansen K, Aakhus T (1963) Central cardiovascular responses to submersion asphyxia in the duck. Am J Physiol 205:1167–1171

    CAS  PubMed  Google Scholar 

  • Jones DR, Fisher HD, McTaggart S, West NH (1973) Heart rate during breathholding and diving in the unrestrained harbor seal (Phoca vitulina richardi). Can J Zool 51:671–680

    CAS  PubMed  Google Scholar 

  • Kanatous SB, Davis RW, DiMichele LV, Cowan DF (1999) High aerobic capacities in the skeletal muscles of seals, sea lions and fur seals: an adaptation to diving hypoxia. J Appl Physiol 86:1247–1256

    CAS  PubMed  Google Scholar 

  • Kanatous SB, Elsner R, Mathieu-Costello O (2001) Muscle capillary supply in harbor seals. J Appl Physiol 90:1919–1926

    CAS  PubMed  Google Scholar 

  • Kanatous SB, Davis RW, Watson R, Polasek L, Williams TM, Mathieu-Costello O (2002) Aerobic capacities in the skeletal muscles of Weddell seals: key to longer dive durations? J Exp Biol 205:3601–3608

    CAS  PubMed  Google Scholar 

  • Kayar SR, Hoppeler H, Lindstedt SL, Classen H, Jones JH, Essen-Gustavsson B, Taylor CR (1989) Total mitochondrial volume in relation to aerobic capacity of horses and steers. Pflugers Arch 413:343–347

    CAS  PubMed  Google Scholar 

  • Keith EO, Ortiz CL (1989) Glucose kinetics in neonatal elephant seals during post-weaning aphagia. Mar Mammal Sci 5:99–115

    Google Scholar 

  • Kerem D, Elsner R (1973) Cerebral tolerance to asphyxial hypoxia in the harbor seal. Resp Physiol 19:188–200

    CAS  Google Scholar 

  • Kerem D, Hammond DD, Elsner R (1973) Tissue glycogen levels in the Weddell seal, Leptonychotes weddellii: a possible adaptation to asphyxial hypoxia. Comp Biochem Physiol 45:731–736

    CAS  Google Scholar 

  • Kettelhut IC, Foss MC, Migliorini RH (1980) Glucose homeostasis in a carnivorous animal (cat) and in rats fed a high-protein diet. Am J Physiol 239:R437–R444

    CAS  PubMed  Google Scholar 

  • Kirby VL, Ortiz CL (1994) Hormones and fuel regulation in fasting elephant seals. In: Le Boeuf BJ, Laws RM (eds) Elephant seals: population ecology, behavior, and physiology. University of California Press, Berkeley, pp 374–386

    Google Scholar 

  • Kooyman GL (1965) Techniques used in measuring diving capacities of Weddell seals. Polar Rec 12:391–394

    Google Scholar 

  • Kooyman GL (1966) Maximum diving capacities of the Weddell seal (Leptonychotes weddelli). Science 151:1553–1554

    CAS  PubMed  Google Scholar 

  • Kooyman GL (1973) Respiratory adaptions in marine mammals. Integr Comp Biol 13:457–468

    Google Scholar 

  • Kooyman GL (1989) Diverse divers: physiology and behavior. Springer, Berlin

    Google Scholar 

  • Kooyman GL, Campbell WB (1972) Heart rates in freely diving Weddell Seals, Leptonychotes weddelli. Comp Biochem Physiol 43A:31–36

    Google Scholar 

  • Kooyman GL, Ponganis PJ (1998) The physiological basis of giving to depth: birds and mammals. Annu Rev Physiol 60:19–32

    CAS  PubMed  Google Scholar 

  • Kooyman GL, Kerem DH, Campbell WB, Wright JJ (1971) Pulmonary function in freely diving Weddell seals, Leptonychotes weddellii. Res Physiol 12:271–282

    CAS  Google Scholar 

  • Kooyman GL, Kerem DH, Campbell WB, Wright JJ (1973) Pulmonary gas exchange in freely diving Weddell seals, Leptonychotes weddellii. Res Physiol 17:283–290

    CAS  Google Scholar 

  • Kooyman GL, Wahrenbrock EA, Castellini MA, Davis RW, Sinnett EE (1980) Aerobic and anaerobic metabolism during voluntary diving in Weddell seals: evidence of preferred pathways from blood chemistry and behavior. J Comp Physiol B 138:335–346

    CAS  Google Scholar 

  • Kooyman GL, Ponganis PJ, Howard RS (1999) Diving animals. In: Lundgren CEG, Miller JN (eds) The lung at depth, vol 132. Marcel Dekkar Inc, New York

    Google Scholar 

  • Kvietys PR, Granger DN (1982) Relation between intestinal blood flow and oxygen uptake. Am J Physiol 242:G202–G208

    CAS  PubMed  Google Scholar 

  • Ladd M, Raisz L, Crowder CH, Page LB (1951) Filtration rate and water diuresis in the seal, Phoca vitulina. J Cell Comp Physiol 38:157–164

    CAS  Google Scholar 

  • Le Boeuf BJ, Naito BJ, Huntley AC, Asaga T (1989) Prolonged, continuous, deep diving by northern elephant seals. Can J Zool 67:2514–2519

    Google Scholar 

  • Leivestad H, Andersen HT, Scholander PF (1957) Physiological response to air exposure in codfish. Science 126:9

    Google Scholar 

  • Lenfant C, Johansen K, Torrance JD (1970) Gas transport and oxygen storage capacity in some pinnipeds and the sea otter. Respir Physiol 9:277–286

    CAS  PubMed  Google Scholar 

  • Lestyk KC, Folkow LP, Blix AS, Hammill MO, Burns JM (2009) Development of myoglobin concentration and acid buffering capacity in harp (Pagophilus groenlandicus) and hooded (Cystophora cristata) seals from birth to maturity. J Comp Physiol B 179:985–996

    CAS  PubMed  Google Scholar 

  • Levey AS, Coresh JC (2012) Chronic kidney disease. Lancet 379:165–180

    PubMed  Google Scholar 

  • Madden KM, Fuiman LA, Williams TM, Davis RW (2008) Identification of foraging dives in free-ranging Weddell seals Leptonychotes weddellii: confirmation using video records. Mar Ecol Prog Ser 365:263–275

    Google Scholar 

  • Malvin RL, Rayner M (1968) Renal function and blood chemistry in Cetacea. Am J Physiol 214:187–191

    CAS  PubMed  Google Scholar 

  • Marshall GJ (1998) Crittercam: an animal-borne imaging and data logging system. Mar Tech Soc J 32:11–17

    Google Scholar 

  • Mathieu O, Krauer R, Hoppeler H, Gehr P, Lindstedt SL, Alexander RM, Taylor CR, Weibel ER (1981) Design of the mammalian respiratory system. VII. Scaling mitochondrial volume in skeletal muscle to body mass. Respir Physiol 44:113–128

    CAS  PubMed  Google Scholar 

  • McDonald BI, Ponganis PJ (2013) Insights from venous oxygen profiles: oxygen utilization and management in diving California sea lions. J Exp Biol 216:3332–3341

    CAS  PubMed  Google Scholar 

  • Meir JU, Champagne CD, Costa DP, Williams CL, Ponganis PJ (2009) Extreme hypoxemic tolerance and blood oxygen depletion in diving elephant seals. Am J Physiol 297:R927–R939

    CAS  Google Scholar 

  • Mirceta S, Signore AV, Burns JM, Cossins AR, Campbell KL, Berenbrink M (2013) Evolution of mammalian diving capacity traced by myoglobin net surface charge. Science 340:1303–1311

    CAS  Google Scholar 

  • Mitani Y, Watanabe Y, Sato K, Cameron MF, Naito Y (2004) 3D diving behavior of Weddell seals with respect to prey accessibility and abundance. Mar Ecol Prog Ser 281:275–281

    Google Scholar 

  • Mitz SA, Reuss S, Folkow LP, Blix AS, Ramirez JM, Hankeln T, Burmester T (2009) When the brain goes diving: glial oxidative metabolism may confer hypoxia tolerance to the seal brain. Neuroscience 163:552–560

    CAS  PubMed  Google Scholar 

  • Murdaugh HV, Schmidt-Nielsen B, Wood JW, Mitchell ML (1961) Cessation of renal function during diving in the trained seal (Phoca vitulina). J Cell Comp Physiol 58:261–265

    CAS  PubMed  Google Scholar 

  • Nishizaki T, Ikegami T, Hiroshige S, Hashimoto K, Uchiyama H, Yoshizumi T, Kishikawa K, Shimada M, Sugimachi K (2001) Small graft for living donor liver transplantation. Ann Sur 233:575–580

    CAS  Google Scholar 

  • Noren SR, Williams TM, Pabst DA, McLellan WA, Dearolf JL (2001) The development of diving in marine endotherms: preparing the skeletal muscles of dolphins, penguins, and seals for activity during submergence. J Comp Phys B 171:127–134

    CAS  Google Scholar 

  • Noren SR, Lacave G, Wells RS, Williams TM (2002) The development of blood oxygen stores in bottlenose dolphins (Tursiops truncatus): implications for diving capacity. J Zool Lond 258:105–113

    Google Scholar 

  • Ortiz R (2001) Osmoregulation in marine mammals. J Exp Biol 204:1831–1844

    CAS  PubMed  Google Scholar 

  • Ortiz RM, Houser DS, Wade CD, Ortiz CL (2003) Hormonal changes associated with the transition between nursing and natural fasting in northern elephant seals (Mirounga angustirostris). Gen Comp Endocrin 130:78–83

    CAS  Google Scholar 

  • Parrish FA, Abernathy K, Marshall GJ, Buhleier BM (2002) Hawaiian monk seals (Monachus schauinslandi) foraging in deep-water coral beds. Mar Mam Sci 18:244–258

    Google Scholar 

  • Pernia SD, Hill A, Ortiz CL (1980) Urea turnover during prolonged fasting in the northern elephant seal. Comp Biochem Physiol 65:731–734

    Google Scholar 

  • Pernia SD, Costa DP, Ortiz CL (1989) Glomerular filtration rate in weaned elephant seal pups during natural, long term fasts. Can J Zool 67:1752–1756

    Google Scholar 

  • Pesce A, Bolognesi M, Bocedi A, Ascenzi P, Dewilde S, Moens L, Hankeln T, Burmester T (2002) Neuroglobin and cytoglobin: fresh blood for the vertebrate globin family. Eur Mol Biol Org 3:1146–1151

    CAS  Google Scholar 

  • Polasek L, Davis RW (2001) Heterogeneity of myoglobin distribution in the locomotory muscles of five cetacean species. J Exp Biol 204:209–215

    CAS  PubMed  Google Scholar 

  • Polasek L, Dickson KA, Davis RW (2006) Spatial heterogeneity of aerobic and glycolytic enzyme activities and myoglobin concentration in the epaxial swimming muscles of the harbor seal (Phoca vitulina). Am J Physiol 290:R1720–R1727

    CAS  Google Scholar 

  • Ponganis PJ (2011) Diving mammals. Compr Physiol 1:517–535

    Google Scholar 

  • Ponganis PJ, Pierce RW (1978) Muscle metabolic profiles and fiber type composition in some marine mammals. Comp Biochem and Physiol 59:99–102

    CAS  Google Scholar 

  • Ponganis PJ, Ponganis EP, Ponganis KV, Kooyman GL (1990a) Swimming velocities in otariids. Can J Zool 68:2105–2112

    Google Scholar 

  • Ponganis PJ, Kooyman GL, Zornow MH, Castellini MA, Croll DA (1990b) Cardiac output and stroke volume in swimming harbor seals. J Comp Physiol B 160:473–482

    CAS  PubMed  Google Scholar 

  • Ponganis PJ, Kooyman GL, Winter LM, Starke LN (1997) Heart rate and plasma lactate responses during submerged swimming and trained diving in California sea lions, Zalophus californianus. J Comp Physiol B 167:9–16

    CAS  PubMed  Google Scholar 

  • Ponganis PJ, Van Dam RP, Marshall G, Knower T, Levenson DH (2000) Sub-ice foraging behavior of emperor penguins. J Exp Biol 203:3275–3278

    CAS  PubMed  Google Scholar 

  • Prewitt JS, Freistroffer DV, Schreer JF, Hammill MO, Burns JM (2010) Postnatal development of muscle biochemistry in nursing harbor seal (Phoca vitulina) pups: limitations to diving behavior? J Comp Physiol B 180:757–766

    CAS  PubMed  Google Scholar 

  • Qvist J, Weber RE, Zapol WM (1981) Oxygen equilibrium properties of blood and hemoglobin of fetal and adult Weddell seals. J Appl Physiol 50:999–1005

    CAS  PubMed  Google Scholar 

  • Qvist J, Hill RD, Schneider RC, Falke KJ, Liggins GC, Guppy M, Elliot RL, Hochachka PW, Zapol WM (1986) Hemoglobin concentrations and blood gas tensions of freediving Weddell seals. J Appl Physiol 61:1560–1569

    CAS  PubMed  Google Scholar 

  • Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785–789

    CAS  PubMed  Google Scholar 

  • Richet C (1899) De la resistance des canards a l’asphyxie. J Physiol Pathol Gen 1:641–650

    Google Scholar 

  • Richmond JP, Burns JM, Rea LD (2006) Ontogeny of total body oxygen stores and aerobic dive potential in Steller sea lions (Eumetopias jubatus). J Comp Physiol B 176:535–545

    PubMed  Google Scholar 

  • Ridgway SH (1972) Homeostasis in the aquatic environment. In: Ridgway SH (ed) Mammals of the Sea: Biology and Medicine. Charles C. Thomas Publisher, Springfield IL, pp 590–747

    Google Scholar 

  • Roberts S, Samuels LT, Reinecke RM (1943) Previous diet and the apparent utilization of fat in the absence of the liver. Am J Physiol 140:639–644

    Google Scholar 

  • Rowell LB (1986) Human circulation regulation during physical stress. Oxford University Press, Oxford, p 415

    Google Scholar 

  • Sapirstein LA (1958) Regional blood Jaw by fractional distribution of indicators. Am J Physiol 193:161–168

    CAS  PubMed  Google Scholar 

  • Sato K, Mitani Y, Cameron MF, Siniff DB, Naito Y (2003) Factors affecting stroking patterns and body angle in diving Weddell seals under natural conditions. J Exp Biol 20:1461–1470

    Google Scholar 

  • Schmidt-Nielsen K (1997) Animal physiology. Cambridge University Press, Cambridge, p 617

    Google Scholar 

  • Schmidt-Nielsen B, Murdaugh HV, O’Dell R, Bacsanyj J (1959) Urea excretion and diving in the seal (Phoca vitulina). J Cell Comp Physiol 53:393–412

    CAS  PubMed  Google Scholar 

  • Schneuer M, Flachsbarth S, Czech-Damal NU, Folkow LP, Siebert U, Burmester T (2012) Neuroglobin of seals and whales: evidence for a divergent role in the diving brain. Neuroscience

  • Scholander PF (1940) Experimental investigations on the respiratory function in diving mammals and birds. Hvalradets Skrifter, Norske Videnskamp-Akad, Oslo 22:1–131

    Google Scholar 

  • Scholander PF (1963) The master switch of life. Sci Am 209:92–106

    CAS  PubMed  Google Scholar 

  • Scholander PF (1964) Animals in aquatic environments: diving mammals and birds. In: Dill DB, Adolph E, Wiber CG (eds) Handbook of physiology: adaptation to the environment, section 4. Am Physiol Soc, Bethesda, pp 729–740

    Google Scholar 

  • Scholander PF, Irving L (1941) Experimental investigations on the respiration and diving of the Florida manatee. J Cell Comp Physiol 17:169–191

    CAS  Google Scholar 

  • Scholander PF, Irving L, Grinnell SW (1942) Aerobic and anaerobic changes in seal muscle during diving. J Biol Chem 142:431–440

    CAS  Google Scholar 

  • Schreer JF, Kovacs KM, O’Hara Hines RJ (2001) Comparative diving patterns of pinnipeds and seabirds. Ecol Mono 71:137–162

    Google Scholar 

  • Scott W, Stevens J, Binder-Macleod SA (2001) Human skeletal muscle fiber type classifications. Phys Ther 81:1810–1816

    CAS  PubMed  Google Scholar 

  • Shero MR, Andrews RD, Lestyk KC, Burns JM (2012) Development of the aerobic dive limit and muscular efficiency in northern fur seals (Callorhinus ursinus). J Comp Physiol B 182:425–436

    CAS  PubMed  Google Scholar 

  • Simpkins MA, Kelly BP, Wartzok D (2001a) Three-dimensional movements within individual dives by ringed seals (Phoca hispida). Can J Zool 79:1455–1464

    Google Scholar 

  • Simpkins MA, Kelly BP, Wartzok D (2001b) Three-dimensional analysis of search behaviour by ringed seals. Animal Behav 62:67–72

    Google Scholar 

  • Simpkins MA, Kelly BP, Wartzok D (2001c) Three-dimensional diving behaviors of ringed seals (Phoca hispida). Mar Mam Sci 17:909–925

    Google Scholar 

  • Skrovan RC, Williams TM, Berry PS, Moore PW, Davis RW (1999) The diving physiology of bottlenose dolphins (Tursiops truncatus), II. Biomechanics and changes in buoyancy at depth. J Exp Biol 202:2749–2761

    CAS  PubMed  Google Scholar 

  • Snyder GK (1983) Respiratory adaptations in diving mammals. Respir Physiol 54:269–294

    CAS  PubMed  Google Scholar 

  • Soini HO, Takala J, Nordin AJ, Makisalo HJ, Hockerstedt KAV (1992) Peripheral and liver tissue oxygen tensions in hemorrhagic shock. Critical Care Med 20:1330–1334

    CAS  Google Scholar 

  • Spence-Bailey LM, Verrier D, Arnould JPY (2007) The physiological and behavioural development of diving in Australian fur seal (Arctocephalus pusillus doriferus) pups. J Comp Physiol B 177:483–494

    CAS  PubMed  Google Scholar 

  • Staron RS (1997) Human skeletal muscle fiber types: delineation, development, and distribution. Can J Appl Physiol 22:307–327

    CAS  PubMed  Google Scholar 

  • Staron RS, Hikida RS, Murray TF, Hagerman FC, Hagerman MY (1989) Lipid depletion and repletion in skeletal muscle following a marathon. J Neurol Sci 94:29–40

    CAS  PubMed  Google Scholar 

  • Stellingwerff T, Boon H, Jonkers RAM, Senden JM, Spriet LL, Koopman R, van Loon LJC (2007) Significant intramyocellular lipid use during prolonged cycling in endurance trained males as assessed by three different methodologies. Am J Physiol Endocrinol Metab 292:E1715–E1723

    CAS  PubMed  Google Scholar 

  • Storz JF, Opazo JC, Hoffmann FG (2012) Gene duplication, genome duplication, and the functional diversification of vertebrate globins. Mol Phylogenetics Evol 66:469–478

    Google Scholar 

  • Suzuki H, Fuwa H (1970) Influence of dietary composition on the capacity of glucose formation in the liver of rats. Agric Biol Chem 34:80–87

    CAS  Google Scholar 

  • Taylor CR, Heglund NC, McMahon TA, Looney TR (1980) Energetic cost of generating muscular force during running. J Exp Biol 86:9–18

    Google Scholar 

  • Thornton SJ, Spielman DM, Pelc NJ, Block WF, Crocker DE, Costa DP, Le Boeuf BJ, Hochachka PW (2001) Effects of forced diving on the spleen and hepatic sinus in northern elephant seal pups. Proc Natl Acad Sci 98:9413–9418

    CAS  PubMed  Google Scholar 

  • Tift MS, Houser DS, Crocker DE (2011) High-density lipoprotein remains elevated despite reductions in total cholesterol in fasting adult male elephant seals (Mirounga angustirostris). Comp Biochem Physiol Part B 159:214–219

    Google Scholar 

  • Vazquez-Medina JP, Zenteno- Savín T, Elsner R, Ortiz RM (2012) Coping with physiological oxidative stress: a review of antioxidant strategies in seals. J Comp Physiol B 182:741–750

    CAS  PubMed Central  PubMed  Google Scholar 

  • Viscarra JA, Champagne CD, Crocker DE, Ortiz RM (2011) 5′AMP-activated protein kinase activity is increased in adipose tissue of northern elephant seal pups during prolonged fasting-induced insulin resistance. J Endocrin 209:317–325

    CAS  Google Scholar 

  • Vogel S (1994) Life in Moving Fluids. Princeton University Press, Princeton

    Google Scholar 

  • Wagner PD (1991) Central and peripheral aspects of oxygen transport and adaptations with exercise. Sports Med 11:133–142

    CAS  PubMed  Google Scholar 

  • Wartzok D, Elsner R, Stone H, Kelly BP, Davis RW (1992) Under-ice movements and the sensory basis of hole finding by ringed and Weddell seals. Can J Zool 70:1712–1722

    Google Scholar 

  • Watanabe Y, Mitani Y, Sato K, Cameron MF, Naito Y (2003) Dive depths of Weddell seals in relation to vertical prey distribution as estimated by image data. Mar Ecol Prog Ser 252:283–288

    Google Scholar 

  • Watson RR, Miller TA, Davis RW (2003) Immunohistochemical fiber typing of harbor seal locomotory muscle. J Exp Biol 206:4105–4111

    PubMed  Google Scholar 

  • Watson RR, Miller TA, Davis RW (2007) Mitochondrial volume density and distribution in harbor seal skeletal muscle. J Comp Physiol Part B 177:89–98

    Google Scholar 

  • Weber P, Howle LE, Murray MM, Reidenberg JS, Fish FE (2013) Hydrodynamic performance of the flippers of large-bodied cetaceans in relation to locomotor ecology. Mar Mam Sci

  • Wilford DC, Gray AT, Hempleman SC, Davis RW, Hill ER (1990) Temperature and the oxygen-hemoglobin dissociation curve of the harbor seal (Phoca vitulina). Respir Physiol 79:137–144

    Google Scholar 

  • Williams TM (1983) Locomotion in the North American mink, a semi-aquatic mammal. II. The effect of an elongate body on running energetics and gait patterns. J Exp Biol 105:283–295

    CAS  PubMed  Google Scholar 

  • Williams TM (1999) The evolution of cost-efficient swimming in marine mammals: limits to energetic optimization. Phil Trans R Soc Lond B 354:193–201

    Google Scholar 

  • Williams TM, Kooyman GL, Croll DA (1991) The effect of submergence on heart rate and oxygen consumption of swimming seals and sea lions. J Comp Physiol B 160:637–644

    CAS  PubMed  Google Scholar 

  • Williams TM, Davis RW, Fuiman L, Francis J, Le Boeuf BJ, Horning M, Calambokidis J, Croll DA (2000) Sink or Swim: strategies for cost-efficient diving by marine mammals. Science 288:133–136

    CAS  PubMed  Google Scholar 

  • Williams TM, Fuiman LA, Horning M, Davis RW (2004) The cost of foraging by a marine predator, the Weddell seal Leptonychotes weddellii: pricing by the stroke. J Exp Biol 207:973–982

    PubMed  Google Scholar 

  • Williams TM, Zavanelli M, Miller MA, Goldbeck RA, Morledge M, Casper D, Pabst DA, McLellan W, Cantin LP, Kliger DS (2008) Running, swimming and diving modifies neuroprotecting globins in the mammalian brain. Proc Biol Sci 275:751–758

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolt R, Gelwick FP, Weltz F, Davis RW (2012) Foraging behavior and prey preference of sea otters (Enhydra lutris kenyoni) in a predominantly soft sediment habitat in Alaska. Mammal Biol 77:271–280

    Google Scholar 

  • Worthy GAJ, Lavigne DM (1987) Mass loss, metabolic rate, and energy utilization by harp and grey seals during the postweaning fast. Physiol Zool 60:352–364

    Google Scholar 

  • Wright TJ, Davis RW (2006) The effect of myoglobin concentration on aerobic dive limit in a Weddell seal. J Exp Biol 209:2576–2585

    CAS  PubMed  Google Scholar 

  • Zapol WM, Liggins GC, Schneider RC, Qvist J, Snider MT, Creasy RK, Hochachka PW (1979) Regional blood flow during simulated diving in the conscious Weddell seal. J Appl Physiol 47:968–973

    CAS  PubMed  Google Scholar 

  • Zenteno-Savín T, Clayton-Hernandez E, Elsner R (2002) Diving seals: are they a model for coping with oxidative stress? Comp Biochem Physiol C 133:527–536

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall W. Davis.

Additional information

Communicated by I.D. Hume.

Appendix

Appendix

Estimated energy efficiency of a mid-water foraging dive for a Weddell seal in McMurdo Sound during the austral spring

Assumptions.

  1. 1.

    Body mass is 430 kg (Davis et al. 2013).

  2. 2.

    Resting post-prandial metabolic rate is 5.53 ml O2 min−1 kg−1 (Williams et al. 2004).

  3. 3.

    The metabolic cost of a flipper stroke is 0.036 ml O2 kg−1 stroke−1 (Williams et al. 2004).

  4. 4.

    Energy equivalence of oxygen is 18.6 kJ L O2 −1 assuming a protein diet with a respiratory quotient of 0.81 (Schmidt-Nielsen 1997).

  5. 5.

    Mean energy content of an Antarctic silverfish is 325 kJ (Davis, unpublished results).

  6. 6.

    Mean duration of a mid-water foraging dive is 16.8 min (Davis et al. 2013).

  7. 7.

    Mean number of silverfish consumed per dive is 15.7 fish (Davis et al. 2013).

  8. 8.

    Mean total number of strokes during a mid-water foraging dive is 821 strokes (Davis, unpublished results).

  9. 9.

    Foraging efficiency (% successful) is 96 % (Davis et al. 2013).

Calculated energy efficiency of a mid-water foraging dive

Energy expenditure during a dive:

  1. 1.

    [(16.8 min × 5.53 ml O2 min−1 kg−1 × 430 kg) + (821 strokes × 0.036 ml O2 kg−1 stroke−1 × 430 kg)]/1,000 = 52.7 L O2.

  2. 2.

    \( 52.7\;\text{L} \;\text{O}_{2} \times 18.6\;\text{kJ} \;\text{L} \;\text{O}_{2}^{ - 1} = 979\;\text{kJ} \).

Energy ingested as silverfish during a dive:

$$ 15.7\;\text{fish} \times 325\;\text{kJ} \,\text{fish}^{ - 1} = 5,103\;\text{kJ }$$

Mean net energy gain per successful dive (energy ingested - energy - expenditure):

$$ 5,103\;\text{kJ} - 978\;\text{kJ} = 4,123\;\text{kJ} $$

Overall energy efficiency (percent energy consumed to energy expended):

$$ [(5,103\;\text{kJ} \times 0.96)/ 979\;\text{kJ} ] \times 100 = 500\,\% $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, R.W. A review of the multi-level adaptations for maximizing aerobic dive duration in marine mammals: from biochemistry to behavior. J Comp Physiol B 184, 23–53 (2014). https://doi.org/10.1007/s00360-013-0782-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-013-0782-z

Keywords

Navigation