Skip to main content
Log in

Differences in in vitro cerebellar neuronal responses to hypoxia in eider ducks, chicken and rats

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Ducks are well-known to be more tolerant to asphyxia than non-diving birds, but it is not known if their defences include enhanced neuronal hypoxia tolerance. To test this, we compared extracellular recordings of spontaneous activity in the Purkinje cell layer of 400 μm thick isolated cerebellar slices from eider ducks, chickens and rats, before, during and after 60 min hypoxia (95%N2–5%CO2) or chemical anoxia (hypoxia + 2 mM NaCN). Most slices rapidly lost activity in hypoxia, with or without recovery after rinse and return to normoxia (95%O2–5%CO2), but some maintained spontaneous activity throughout the insult. Proportions of ‘surviving’ (i.e. recovering or active) duck slices were significantly higher than for chickens in anoxia, and relative activity levels were higher for ducks than for chickens during hypoxia, anoxia and recovery. Survival of rat slices was significantly poorer than for birds under all conditions. Results suggest that (1) duck cerebellar neurons are intrinsically more hypoxia-tolerant than chicken neurons; (2) avian neurons are more hypoxia-tolerant than rat neurons, and (3) the enhanced hypoxic tolerance of duck neurons largely depended on efficient anaerobiosis since it mainly manifested itself in chemical anoxia. Mechanisms underlying the observed differences in neuronal hypoxic responses remain to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akemann W, Knöpfel T (2006) Interaction of Kv3 potassium channels and resurgent sodium current influences the rate of spontaneous firing of Purkinje neurons. J Neurosci 26:4602–4612

    Article  CAS  PubMed  Google Scholar 

  • Andersen HT (1959) Depression of metabolism in the duck during diving. Acta Physiol Scand 46:234–239

    Article  Google Scholar 

  • Andersen HT (1966) Physiological adaptations in diving vertebrates. Physiol Rev 46:212–243

    CAS  PubMed  Google Scholar 

  • Armstrong DM, Rawson JA (1979) Activity patterns of cerebellar cortical neurones and climbing fibre afferents in the awake cat. J Physiol 289:425–448

    CAS  PubMed  Google Scholar 

  • Barenberg P, Strahlendorf H, Strahlendorf J (2001) Hypoxia induces an excitotoxic-type of dark cell degeneration in cerebellar Purkinje neurons. Neurosci Res 40:245–254

    Article  CAS  PubMed  Google Scholar 

  • Belcari P, Francesconi A, Majoli C, Strata P (1977) Spontaneous activity of the Purkinje cells in the pigeon cerebellum. Pflugers Arch 371:147–154

    Article  CAS  PubMed  Google Scholar 

  • Bert P (1870) Leçon sur la physiologie comparée de la respiration. Ballière, Paris, pp 526–553

    Google Scholar 

  • Bickler PE (2004) Clinical perspectives: neuroprotection lessons from hypoxia-tolerant organisms. J Exp Biol 207:3243–3249

    Article  CAS  PubMed  Google Scholar 

  • Bickler PE, Buck LT (2007) Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Annu Rev Physiol 69:145–170

    Article  CAS  PubMed  Google Scholar 

  • Bickler PE, Donohoe PH (2002) Adaptive responses of vertebrate neurons to hypoxia. J Exp Biol 205:3579–3586

    CAS  PubMed  Google Scholar 

  • Bickler PE, Julian D (1992) Regional cerebral blood flow and tissue oxygenation during hypocarbia in geese. Am J Physiol 263:R221–R225

    CAS  PubMed  Google Scholar 

  • Bickler PE, Koh SO, Severinghaus JW (1989) Effects of hypoxia and hypocapnia on brain redox balance in ducks. Am J Physiol 257:R132–R135

    CAS  PubMed  Google Scholar 

  • Bittar PG, Charnay Y, Pellerin L, Bouras C, Magistretti PJ (1996) Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J Cereb Blood Flow Metab 16:1079–1089

    Article  CAS  PubMed  Google Scholar 

  • Blix AS, Berg T (1974) Arterial hypoxia and the diving responses of ducks. Acta Physiol Scand 92:566–568

    Article  CAS  PubMed  Google Scholar 

  • Blix AS, Folkow B (1983) Cardiovascular adjustments to diving in mammals and birds. In: Sheperd JT, Abboud FM (eds) Handbook of physiology. The cardiovascular system III. Peripheral circulation and organ blood flow. American Physiological Society, Bethesda, pp 917–945

    Google Scholar 

  • Blix AS, From SH (1971) Lactate dehydrogenase in diving animals—a comparative study with special reference to the eider (Somateria mollissima). Comp Biochem Physiol B 40:579–584

    Article  CAS  PubMed  Google Scholar 

  • Bryan RM Jr, Jones DR (1980) Cerebral energy metabolism in diving and non-diving birds during hypoxia and apnoeic asphyxia. J Physiol 299:323–336

    CAS  PubMed  Google Scholar 

  • Burmester T, Hankeln T (2009) What is the function of neuroglobin? J Exp Biol 212:1423–1428

    Article  CAS  PubMed  Google Scholar 

  • Burmester T, Weich B, Reinhardt S, Hankeln T (2000) A vertebrate globin expressed in the brain. Nature 407:520–523

    Article  CAS  PubMed  Google Scholar 

  • Cantin M, Bedard J, Milne H (1974) Food and feeding of common eiders in St Lawrence estuary in summer. Can J Zool 52:319–334

    Article  Google Scholar 

  • Caputa M, Folkow L, Blix AS (1998) Rapid brain cooling in diving ducks. Am J Physiol 275:R363–R371

    CAS  PubMed  Google Scholar 

  • Clippinger TL, Bennett A, Platt SR (1996) The avian neurologic examination and ancillary neurodiagnostic techniques. J Avian Med Surg 10:221–247

    Google Scholar 

  • Edgerton JR, Reinhart PH (2003) Distinct contributions of small and large conductance Ca2+-activated K+ channels to rat Purkinje neuron function. J Physiol 548:53–69

    Article  CAS  PubMed  Google Scholar 

  • Faraci FM (1991) Adaptations to hypoxia in birds: how to fly high. Annu Rev Physiol 53:59–70

    Article  CAS  PubMed  Google Scholar 

  • Faraci FM, Fedde MR (1986) Regional circulatory responses to hypocapnia and hypercapnia in bar-headed geese. Am J Physiol 250:R499–R504

    CAS  PubMed  Google Scholar 

  • Fernandes JA, Lutz PL, Tannenbaum A, Todorov AT, Liebovitch L, Vetres R (1997) Electroencephalogram activity in the anoxic turtle brain. Am J Physiol 273:R911–R919

    CAS  PubMed  Google Scholar 

  • Folkow LP, Ramirez JM, Ludvigsen S, Ramirez N, Blix AS (2008) Remarkable neuronal hypoxia tolerance in the deep-diving adult hooded seal (Cystophora cristata). Neurosci Lett 446:147–150

    Article  CAS  PubMed  Google Scholar 

  • Granit R, Phillips CG (1956) Excitatory and inhibitory processes acting upon individual Purkinje cells of the cerebellum in cats. J Physiol 133:520–547

    CAS  PubMed  Google Scholar 

  • Grubb B, Mills CD, Colacino JM, Schmidt-Nielsen K (1977) Effect of arterial carbon dioxide on cerebral blood flow in ducks. Am J Physiol 232:H596–H601

    CAS  PubMed  Google Scholar 

  • Grubb B, Colacino JM, Schmidt-Nielsen K (1978) Cerebral blood flow in birds: effect of hypoxia. Am J Physiol 234:H230–H234

    CAS  PubMed  Google Scholar 

  • Haggblom L, Terwilliger RC, Terwilliger NB (1988) Changes in myoglobin and lactate dehydrogenase in muscle tissues of a diving bird, the pigeon guillemot, during maturation. Comp Biochem Physiol B 91:273–277

    Article  CAS  PubMed  Google Scholar 

  • Häusser M, Clark BA (1997) Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 19:665–678

    Article  PubMed  Google Scholar 

  • Hochachka PW (1986) Metabolic arrest. Intensive Care Med 12:127–133

    Article  CAS  PubMed  Google Scholar 

  • Hochachka PW, Murphy B (1979) Metabolic status during diving and recovery in marine mammals. Int Rev Physiol 20:253–287

    CAS  PubMed  Google Scholar 

  • Hudson DM, Jones DR (1986) The influence of body mass on the endurance to restrained submergence in the pekin duck. J Exp Biol 120:351–367

    Google Scholar 

  • Kugelstadt D, Haberkamp M, Hankeln T, Burmester T (2004) Neuroglobin, cytoglobin, and a novel, eye-specific globin from chicken. Biochem Biophys Res Commun 325:719–725

    Article  CAS  PubMed  Google Scholar 

  • Lierse W (1963) Die Kapillardichte im Wirbeltiergehirn. Acta Anat 54:1–31

    Google Scholar 

  • Llinas R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol 305:171–195

    CAS  PubMed  Google Scholar 

  • Lutz PL, Nilsson GE, Prentice HM (2003) The brain without oxygen. Kluwer Academic Publishers, Dordrecht, pp 61–101

    Google Scholar 

  • Mano NI (1970) Changes of simple and complex spike activity of cerebellar Purkinje cells in sleep and waking. Science 170:1325–1327

    Article  CAS  PubMed  Google Scholar 

  • Milsom WK, Johansen K, Millard RW (1973) Blood respiratory properties in some Antarctic birds. Condor 75:472–474

    Article  Google Scholar 

  • Milton SL, Prentice HM (2007) Beyond anoxia: the physiology of metabolic downregulation and recovery in the anoxia-tolerant turtle. Comp Biochem Physiol A 147:277–290

    Article  Google Scholar 

  • Mitz SA, Reuss S, Folkow LP, Blix AS, Ramirez J-M, Hankeln T, Burmester T (2009) When the brain goes diving: glial oxidative metabolism may confer hypoxia tolerance to the seal brain. Neuroscience. 163:552–560

    Google Scholar 

  • Nargeot R (2001) Long-lasting reconfiguration of two interacting networks by a cooperation of presynaptic and postsynaptic plasticity. J Neurosci 21:3282–3294

    CAS  PubMed  Google Scholar 

  • Peña F, Parkis MA, Tryba AK, Ramirez J-M (2004) Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia and hypoxia. Neuron 43:105–117

    Article  PubMed  Google Scholar 

  • Ponganis PJ, Starke LN, Horning M, Kooyman GL (1999) Development of diving capacity in emperor penguins. J Exp Biol 202:781–786

    CAS  PubMed  Google Scholar 

  • Ponganis PJ, Stockard TK, Meir JU, Williams CL, Ponganis KV, van Dam RP, Howard R (2007) Returning on empty: extreme blood O2 depletion underlies dive capacity of emperor penguins. J Exp Biol 210:4279–4285

    Article  CAS  PubMed  Google Scholar 

  • Ramirez JM, Folkow LP, Blix AS (2007) Hypoxia tolerance in mammals and birds: from the wilderness to the clinic. Annu Rev Physiol 69:113–143

    Article  CAS  PubMed  Google Scholar 

  • Richet C (1899) De la résistance des canards à l’asphyxie. J Physiol Pathol Gén 1:641–650

    Google Scholar 

  • Scholander PF (1940) Experimental investigations on the respiratory function in diving mammals and birds. Hvalrådets Skr 22:1–131

    Google Scholar 

  • Shams H, Scheid P (1987) Respiration and blood gases in the duck exposed to normocapnic and hypercapnic hypoxia. Respir Physiol 67:1–12

    Article  CAS  PubMed  Google Scholar 

  • Siesjö B (1978) Brain energy metabolism. Wiley, New York

    Google Scholar 

  • Stephenson R, Turner DL, Butler PJ (1989) The relationship between diving activity and oxygen storage capacity in the tufted duck (Aythya fuligula). J Exp Biol 141:265–275

    Google Scholar 

  • Sultan F, Glickstein M (2007) The cerebellum: comparative and animal studies. Cerebellum 6:168–176

    Article  PubMed  Google Scholar 

  • Sun Y, Jin K, Mao X, Zhu Y, Greenberg DA (2001) Neuroglobin is up-regulated by and protects neurons from hypoxic-ischemic injury. Proc Natl Acad Sci USA 98:15306–15311

    Article  CAS  PubMed  Google Scholar 

  • Weber RE, Hemmingsen EA, Johansen K (1974) Functional and biochemical studies of penguin myoglobin. Comp Biochem Physiol B 49:197–214

    Article  CAS  PubMed  Google Scholar 

  • Welsh JP, Yuen G, Placantonakis DG, Vu TQ, Haiss F, O’Hearn E, Molliver ME, Aicher SA (2002) Why do Purkinje cells die so easily after global brain ischemia? Aldolase C, EAAT4, and the cerebellar contribution to posthypoxic myoclonus. Adv Neurol 89:331–359

    PubMed  Google Scholar 

  • Wilson VJ, Anderson JA, Felix D (1974) Unit and field potential activity evoked in the pigeon vestibulocerebellum by stimulation of individual semicircular canals. Exp Brain Res 19:142–157

    Article  CAS  PubMed  Google Scholar 

  • Womack MD, Khodakhan K (2004) Dendritic control of spontaneous bursting in cerebellar Purkinje cells. J Neurosci 24:3511–3521

    Article  CAS  PubMed  Google Scholar 

  • Wu J-Y, Cohen LB, Falk CX (1994) Neuronal activity during different behaviors in Aplysia: a distributed organization? Science 263:820–823

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Jan-Marino Ramirez and Arnoldus Schytte Blix for advice throughout the study, Samuel Geiseler and Julie Jonstrup for technical assistance and the Department of Medical Physiology, University of Tromsø, for lending us some of the instruments. This work was supported by grants from the Norwegian Research Council (no. 164791/V40) and the Roald Amundsen Centre for Arctic Research.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stian Ludvigsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ludvigsen, S., Folkow, L.P. Differences in in vitro cerebellar neuronal responses to hypoxia in eider ducks, chicken and rats. J Comp Physiol A 195, 1021–1030 (2009). https://doi.org/10.1007/s00359-009-0476-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-009-0476-x

Keywords

Navigation