Skip to main content
Log in

Effect of synthesis method on structural and physical properties of MgO/MgAl2O4 nanocomposite as a refractory ceramic

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work is a comparative study of MgO/MgAl2O4 refractory nanocomposites synthesized by three different liquid phase methods. Physical–chemical and microstructural characteristics of the refractories have been characterized in terms of bulk density, apparent porosity, water adsorption capacity, crystalline phases, crystallite size, particle size distribution, morphology and composition. The mechanical behavior of the synthesized samples was evaluated in terms of bend strength and cold compressive strength. The thermal expansion coefficients of the MgO/MgAl2O4 refractories were also measured from room temperature to 1200 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. I.-J. Shon, I.-Y. Ko, H.-S. Kang, K.-T. Hong, J.-M. Doh, J.-K. Yoon, Properties and rapid consolidation of nanostructured, MgO–MgAl2O4 composites. Ceram. Int. 38, 311–316 (2012)

    Article  Google Scholar 

  2. S. Schachner, S. Jin, D. Gruber, H. Harmuth, Three stage creep behavior of MgO containing ordinary refractories in tension and compression. Ceram. Int. 45, 9483–9490 (2019)

    Article  Google Scholar 

  3. Gu Qiang, F. Zhao, X. Liu, Q. Jia, Preparation and thermal shock behavior of nanoscale MgAl2O4 spinel-toughened MgO-based refractory aggregates. Ceram. Int. 45, 12093–12100 (2019)

    Article  Google Scholar 

  4. R.D. Maschio, B. Fabbri, C. Fiori, Industrial applications of refractories containing magnesium aluminate spinel. Inds. Ceram. 8(2), 121–126 (1988)

    Google Scholar 

  5. C. Aksel, P.D. Warren, F.L. Riley, Magnesia–spinel microcomposites. J. Eur. Ceram. Soc. 24, 3119–3128 (2004)

    Article  Google Scholar 

  6. Q. Hou, X. Luo, Z. Xie, Di An, X. Zhang, Z. Peng, Effect of magnesia-alumina spinel precursor sol on the sintering property of fused magnesia refractory. Ceram. Int. 45, 3459–3464 (2019)

    Article  Google Scholar 

  7. D.R. Wilson, R.M. Evans, I. Wodsworth, J. Cawley, Properties and applications of sintered magnesia alumina spinels. Proc. UNITECR-93, pp 749–760 (1993)

  8. M. Kimura, Y. Uasuda, H. Nishio, Development of magnesia spinel bricks for rotary cement kilns in Japan. Interceram. Special Issue 33, 344–376 (1984)

    Google Scholar 

  9. C. Aksel, R.W. Davidge, P.D. Warren, F.L. Riley, Investigation of thermal shock resistance in model magnesia–spinel refractory materials, in IV. Ceramic Congress, Proceedings Book, Part 1, 1998, pp. 193–199, Turkey.

  10. C. Aksel, P.D. Warren, Thermal shock parameters (R, R and R) of magnesia–spinel composites. J. Eur. Ceram. Soc. 23(2), 301–308 (2003)

    Article  Google Scholar 

  11. D.J. Bray, Toxicity of chromium compounds formed in refractories. Am. Ceram. Soc. Bull. 64(7), 1012–1016 (1985)

    Google Scholar 

  12. C. Aksel, F.L. Riley, Effect of the particle size distribution of spinel on the mechanical properties and thermal shock performance of MgO–spinel composites. J. Eur. Ceram. Soc. 23, 3079–3087 (2003)

    Article  Google Scholar 

  13. C. Aksel, B. Rand, F.L. Riley, P.D. Warren, Mechanical properties of magnesia–spinel composites. J. Eur. Ceram. Soc. 22, 745–754 (2002)

    Article  Google Scholar 

  14. A. Ghosh, R. Sarkar, B. Mukherjee, S.K. Das, Effect of spinel content on the properties of magnesia–spinel composite refractory. J. Eur. Ceram. Soc. 24, 2079–2085 (2004)

    Article  Google Scholar 

  15. G.E. Gonçalves, G.R.C. Pacheco, M.A.M. Brito, S.L.C. Silva, V.F.C. Lins, Influence of magnesia in the infiltration of magnesia–spinel refractory bricks by different clinkers, REM: R. Esc. Minas, Ouro Preto, 68(4), 409–415 (2015)

  16. J. Szczerba, Z. Pedzich, M. Nikiel, D. Kapuscinska, Influence of raw materials morphology on properties of magnesia–spinel refractories. J. Eur. Ceram. Soc. 27, 1683–1689 (2007)

    Article  Google Scholar 

  17. C. Aksel, T. Aksoy, Microstructural characterisation and investigation of the effects of ZrSiO4–Y2O additions on corrosion behaviour of MgO-spinel composite refractories. Adv. Mater. Res. 445, 536–541 (2012)

    Article  Google Scholar 

  18. B. Sahin, C. Aksel, Developments on the mechanical properties of MgO–MgAl2O4 composite refractories by ZrSiO4–3 mol% Y2O3 addition. J. Eur. Ceram. Soc. 32, 49–57 (2012)

    Article  Google Scholar 

  19. R. Ceylantekin, C. Aksel, Improvements on corrosion behaviours of MgO–spinel composite refractories by addition of ZrSiO4. J. Eur. Ceram. Soc. 32, 727–736 (2012)

    Article  Google Scholar 

  20. X. Ding, H. Zhao, Z. Xiang, H. Zhang, Q. He, J. Li, Effect of hercynite content on the properties of magnesia–spinel composite refractories sintered in different atmospheres. Ceram. Int. 42, 19058–19062 (2016)

    Article  Google Scholar 

  21. Li Jingjie, Z. Huizhong, Z. Pengda, Mu Cui Jiangtao, L.Y. Songlin, Effects of Cr2O3 addition on property improvement of magnesia–spinel refractories used in RH snorkel. Ceram Int 42, 18579–18584 (2016)

    Article  Google Scholar 

  22. A. Atkinson, P. Bastid, Q. Liu, Mechanical properties of magnesia–spinel composites. J. Am. Ceram. Soc. 90(8), 248 9 – 2496 (2007)

  23. D. Mohapatra, D. Sarkar, Preparation of MgO–MgAl2O4 composite for refractory application. J. Mater. Process Technol. 189, 279–283 (2007)

    Article  Google Scholar 

  24. K. Orlinski, M. Romaniec, A. Malinowska, R. Diduszko, Growth-microstructure relationship in MgO–MgAl2O4 eutectic fabricated by micro-pulling down method with MgAl2O4 seed crystals. J Eur Ceram Soc 39, 3843–3847 (2019)

    Article  Google Scholar 

  25. S. A. Bocanegra, A. D. Ballarini, O. A. Scelza S. R.de Miguel, The influence of the synthesis routes of MgAl2O4 on its properties and behavior as support of dehydrogenation catalysts. Mater. Chem. Phys. 111, 534–541 (2008)

  26. M.M. Imani, M. Safaei, Optimized synthesis of magnesium oxide nanoparticles as bactericidal agents. J. Nanotechnol. 2019, 1–6 (2019)

    Article  Google Scholar 

  27. D. Domanski, G. Urettavizcaya, F.J. Castro, F.C. Gennari, J. Am. Ceram. Soc. 87(11), 2020–2024 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Iranian Research Organization for Science and Technology (IROST) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Salehirad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafiee, H., Salehirad, A. & Samimi, A. Effect of synthesis method on structural and physical properties of MgO/MgAl2O4 nanocomposite as a refractory ceramic. Appl. Phys. A 126, 198 (2020). https://doi.org/10.1007/s00339-020-3369-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3369-z

Keywords

Navigation