Skip to main content
Log in

Suppression of terahertz dipole oscillation in split-ring resonators deformed from square to triangle

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The evolution of terahertz resonance modes in an individual split-ring resonator (SRR) is investigated experimentally by locally structural deformation. The length reduction of opposite-side results in a frequency blueshift of resonance modes. Simultaneously, the Q factor of inductive–capacitive oscillation mode is enhanced while the dipole oscillation is suppressed. The numerical simulation indicates that the lateral-side and arms will take the place of opposite-side contributing to the dipole oscillation in deformed SRR. A further apex-angle increasing leads to a huge coupling loss so that the dipole oscillation is suppressed in right triangle SRR and obtuse triangle SRR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V.M. Shalaev (2007) Optical negative-index metamaterials. Nat. Photon. 1(1), 41–48.

    Article  ADS  MathSciNet  Google Scholar 

  2. R. Marqués, F. Medina, R. Rafii-El-Idrissi, Role of bianisotropy in negative permeability and left-handed metamaterials. Phys. Rev. B 65, 0144440 (2002)

    Article  ADS  Google Scholar 

  3. W.J. Padilla, A.J. Taylor, C. Highstrete et al., Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys. Rev. Lett. 96, 107401 (2006)

    Article  ADS  Google Scholar 

  4. Q. Wang, X. Zhang, Y. Xu et al., A broadband metasurface-based terahertz flat-lens. Array. Adv. Opt. Mater. 3(6), 779–785 (2015)

    Article  Google Scholar 

  5. L. Liu, X. Zhang, M. Kenney et al., Broadband metasurfaces with simultaneous control of phase and amplitude. Adv. Mater. 26(29), 5031–5036 (2014)

    Article  Google Scholar 

  6. J. Gu, R. Singh, X. Liu et al., Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun. 3, 1151 (2012)

    Article  ADS  Google Scholar 

  7. X. Liu, J. Gu, R. Singh et al., Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode. Appl. Phys. Lett. 100(13), 131101 (2012)

    Article  ADS  Google Scholar 

  8. W. Cao, R. Singh, C. Zhang et al., Plasmon-induced transparency in metamaterials: active near field coupling between bright superconducting and dark metallic mode resonators. Appl. Phys. Lett. 103(10), 101106 (2013)

    Article  ADS  Google Scholar 

  9. C. Li, L. Huang, W. Wang et al., Electromagnetically induced transparency in nano-structures made from metallic nanorod and split-ring-resonator. Opt. Commun. 355, 337–341 (2015)

    Article  ADS  Google Scholar 

  10. J.F. O’Hara, R. Singh, I. Brener et al., Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Opt. Express 16(3), 1786–1795 (2008)

    Article  ADS  Google Scholar 

  11. J.F. O’Hara, W. Withayachumnankul, I. Al-Naib, A review on thin-film sensing with terahertz waves. J Infrared Milli Terahz Waves 33(3), 245–291 (2012)

    Article  Google Scholar 

  12. I. Al-Naib, R. Singh, C. Rockstuhl et al., Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials. Appl. Phys. Lett. 101(7), 71108 (2012)

    Article  Google Scholar 

  13. W. Withayachumnankul, H. Lin, K. Serita et al., Sub-diffraction thin-film sensing with planar terahertz metamaterials. Opt. Express 20(3), 3345–3352 (2012)

    Article  ADS  Google Scholar 

  14. X. He, L. Qiu, Y. Wang et al., A compact thin-film sensor based on nested split-ring-resonator (SRR) metamaterials for microwave applications. J. Infrared Milli Terahz Waves 32(7), 902–913 (2011)

    Article  Google Scholar 

  15. F. D’Apuzzo, P. Candeloro, F. Domenici et al., Resonating terahertz response of periodic arrays of subwavelength apertures. Plasmonics 10(1), 45–50 (2015)

    Article  Google Scholar 

  16. Z. Vafapour, A. Zakery, New approach of plasmonically induced reflectance in a planar metamaterial for plasmonic sensing applications. Plasmonics 11(2), 609–618 (2016)

    Article  Google Scholar 

  17. S. Xiao, T. Wang, Y. Liu et al., An ultrasensitive and multispectral refractive index sensor design based on quad-supercell metamaterials. Plasmonics 12(1), 185–191 (2017)

    Article  Google Scholar 

  18. S.Y. Chiam, R. Singh, J. Gu et al., Increased frequency shifts in high aspect ratio terahertz split ring resonators. Appl. Phys. Lett. 94, 064102 (2009)

    Article  ADS  Google Scholar 

  19. Chen HT, O JF, Hara et al. (2008) Experimental demonstration of frequency-agile terahertz metamaterials. Nat. Photon. 2, 295.

    Article  Google Scholar 

  20. H.T. Chen, W.J. Padilla, JMO Zide et al., Active terahertz metamaterial devices. Nature 444(7119), 597–600 (2006)

    Article  ADS  Google Scholar 

  21. M. Rahm, J. Li, W.J. Padilla, THz wave modulators: a brief review on different modulation techniques. J. Infrared Milli Terahz Waves 34(1), 1–27 (2013)

    Article  Google Scholar 

  22. Y. Cheng, R. Gong, Z. Cheng, A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves. Opt. Commun. 361, 41–46 (2016)

    Article  ADS  Google Scholar 

  23. J. Zhao, Y. Cheng, Ultrabroadband microwave metamaterial absorber based on electric SRR loaded with lumped resistors. J. Electron. Mater. 45(10), 5033–5039 (2016)

    Article  ADS  Google Scholar 

  24. E. Bründermann, H.-W. Hübers, M. Kimmitt, Terahertz techniques (Springer, Berlin, 2012), p. 301

    Google Scholar 

  25. N.I. Zheludev, Y.S. Kivshar, From metamaterials to metadevices. Nat. Mater. 11(11), 917–924 (2012)

    Article  ADS  Google Scholar 

  26. K.E. Peiponen, J.A. Zeitler, M. Kuwata-Gonokami, Terahertz spectroscopy and imaging (Springer, Berlin, 2013), p. 491

    Book  Google Scholar 

  27. B. Ferguson, X. Zhang, Materials for terahertz science and technology. Nat. Mater. 1, 26–33 (2002)

    Article  ADS  Google Scholar 

  28. Y. Lin, Y. Qian, F. Ma et al., Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators. Appl. Phys. Lett. 102(11), 111908 (2013)

    Article  ADS  Google Scholar 

  29. C. Jansen, IAI Al-Naib, N. Born et al., Terahertz metasurfaces with high Q-factors. Appl. Phys. Lett. 98(5), 51109 (2011)

    Article  ADS  Google Scholar 

  30. I. Al-Naib, Y. Yang, M.M. Dignam et al., Ultra-high Q even eigenmode resonance in terahertz metamaterials. Appl. Phys. Lett. 106(1), 11102 (2015)

    Article  ADS  Google Scholar 

  31. B. Wang, G. Wang, L. Wang, Design of a novel dual-band terahertz metamaterial absorber. Plasmonics 11(2), 523–530 (2016)

    Article  Google Scholar 

  32. Shi SC, Paine S, Yao QJ et al. (2016) Terahertz and far-infrared windows opened at Dome A in Antarctica. Nat. Astronomy 1, 0001.

    Article  ADS  Google Scholar 

  33. A.K. Azad, A.J. Taylor, E. Smirnova et al., Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators. Appl. Phys. Lett. 92(1), 11119 (2008)

    Article  ADS  Google Scholar 

  34. Z. Song, Z. Zhao, H. Zhao et al., Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators. J. Appl. Phys. 118(4), 43108 (2015)

    Article  Google Scholar 

  35. J. García-García, F. Martín, J.D. Baena et al., On the resonances and polarizabilities of split ring resonators. J. Appl. Phys. 98, 033103-1-033103-9 (2005)

    Article  ADS  Google Scholar 

  36. R. Marqués, F. Medina, R. Rafii-El-Idrissi, Role of bianisotropy in negative permeability and left-handed metamaterials. Phys. Rev. B 65, 144440-1-144440-5 (2002)

    ADS  Google Scholar 

  37. M.A. Burnett, M.A. Fiddy, Apex-angle-dependent resonances in triangular split-ring resonators. Appl. Phys. A 122(2), 65-1-65-4 (2016)

    Article  ADS  Google Scholar 

  38. Z. Song, Z. Zhao, W. Peng et al., Terahertz response of fractal meta-atoms based on concentric rectangular square resonators. J. Appl. Phys. 118(19), 193103 (2015)

    Article  ADS  Google Scholar 

  39. X. Chen, T.M. Grzegorczyk, B.I. Wu et al., Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E 70, 016608 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61307130) and the Joint Research Fund in Astronomy (Grant No. U1631112) under cooperative agreement between the National Natural Science Foundation of China (NSFC) and Chinese Academy of Sciences (CAS). Z.Z. acknowledges the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry as well as Innovation Program of Shanghai Municipal Education Commission (Grant No. 14YZ077). W.P. acknowledges the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB04030000). Z.L. acknowledges the Project of Science and Technology Commission of Shanghai Municipality (Grant No. 16695840600). Z.Z and X.Z contributed equally in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyu Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Zhao, Z., Peng, W. et al. Suppression of terahertz dipole oscillation in split-ring resonators deformed from square to triangle. Appl. Phys. A 123, 266 (2017). https://doi.org/10.1007/s00339-017-0904-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0904-7

Keywords

Navigation