Skip to main content
Log in

THz Wave Modulators: A Brief Review on Different Modulation Techniques

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We review different techniques for modulation of the electromagnetic properties of terahertz (THz) waves. We discuss various approaches for electronic, optical, thermal and nonlinear modulation in distinct material systems such as semiconductors, graphene, photonic crystals and metamaterials. The modulators are classified and compared with respect to modulation speed, modulation depth and categorized by the physical quantity they control as e.g. amplitude, phase, spectrum, spatial and temporal properties of the THz wave. Based on the review paper, the reader should obtain guidelines for the proper choice of a specific modulation technique in view of the targeted application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J. P. Gordon, H. J. Zeiger, and C. H. Townes, “Molecular Microwave Oscillator and New Hyperfine Structure in the Microwave Spectrum of NH3,” Phys. Rev. 95, 282–284 (1954).

    Article  Google Scholar 

  2. T. H. Maiman, “Stimulated Optical Radiation in Ruby,” Nature 187, 493–494 (1960).

    Article  Google Scholar 

  3. W. M. Steen, J. Mazumder, and K. G. Watkins, "Laser Material Processing," 4th edition, Springer London (2010).

    Book  Google Scholar 

  4. Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical Metrology," Nature 416, 233-237 (2002).

    Article  Google Scholar 

  5. W. Demtröder, "Laser Spectroscopy: Vol. 1: Basic Principles," 4th edition, Springer (2008).

  6. W. Demtröder, "Laser Spectroscopy: Vol. 2: Experimental Techniques," 4th edition, Springer (2008).

  7. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao and R. P. Van Duyne, "Biosensing with plasmonic nanosensors," Nature Mat. 7, 442-453 (2008).

    Article  Google Scholar 

  8. G. P. Agrawal, "Fiber-Optic Communication Systems (Wiley Series in Microwave and Optical Engineering), 4th edition, Wiley (2010).

  9. D. Qian, M.-F. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7 Tb/s (370 × 294 Gb/s) PDM-128QAM-OFDM Transmission over 3 × 55 km SSMF using pilot-based phase noise mitigation,” in Proc. Optical Fiber Communications Conf. (OFC 2011), no. PDPB5, 2011.

  10. J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109 Tb/s (7 × 97 × 172 Gb/s SDM/WDM/PDM) QPSK transmission through 16.8 km homogeneous multi-core fiber,” in Proc. Optical Fiber Communications Conf. (OFC 2011), no. PDPB6, 2011.

  11. D. Hillerkuss et al., "26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing," Nature Photon. 5, 364–371 (2011).

    Article  Google Scholar 

  12. R. Tyson, "Principles of Adaptive Optics," 3rd edition, Taylor & Francis (2010).

  13. M. Tonouchi, "Cutting-edge terahertz technology," Nature Photon. 1, 97-105 (2007).

    Article  Google Scholar 

  14. P. H. Siegel, "Terahertz technology," IEEE Trans. Microwave Theory and Techniques 50, 910-928 (2002).

    Article  Google Scholar 

  15. S. Wietzke, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, "Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints," J. European Opt. Soc. 2, 07013 (2007).

    Article  Google Scholar 

  16. F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, "Terahertz quality control of polymeric products," Int. Journal Infrared and Millimeter Waves 27, 547-556 (2006).

    Article  Google Scholar 

  17. C. Stoik, M. Bohn, and J. Blackshire, "Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy," Opt. Express 16, 17039-17051 (2008).

    Article  Google Scholar 

  18. M. Theuer, R. Beigang, and D. Grischkowsky, "Highly sensitive terahertz measurement of layer thickness using a two-cylinder waveguide sensor," Appl. Phys. Lett., Vol. 97, p. 071106 (2010).

    Article  Google Scholar 

  19. M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, "Security applications of terahertz technology," Proc. SPIE 5070, 44-52 (2003).

    Article  Google Scholar 

  20. C. Jastrow, K. Munter, R. Piesiewicz, T. Kurner, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,“ Electronics Letters 44, 213- 214 (2008).

    Article  Google Scholar 

  21. Fausto Rossi and Tilmann Kuhn, “Theory of ultrafast phenomena in photoexcited semiconductors,” Rev. Mod. Phys. 74, 895 (2002).

    Google Scholar 

  22. Ronald Ulbricht, Euan Hendry, Jie Shan, Tony F. Heinz, and Mischa Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83, 543 (2011).

  23. H. Alius and G. Dodel, “Amplitude-, phase-, and frequency modulation of far-infrared radiation by optical excitation of silicon,” Infrared Phys. 32, 1 (1991).

    Article  Google Scholar 

  24. T. Vogel, G. Dodel, E. Holzhauer, H. Salzmann, and A. Theurer, “High-speed switching of far-infrared radiation by photoionization in a semiconductor,” Appl. Opt. 31, 329-337 (1992).

    Article  Google Scholar 

  25. T. Nozokido, H. Minamide, and K. Mizuno, “Generation of submillimeter wave short pulses and their measurements,” RIKEN Review, No. 11, 11 (1995).

  26. T. Nozokido, H. Minamide, and K. Mizuno, “Modulation of submillimeter wave radiation by laser-produced free carriers in semiconductors,” Electron. Comm. Jpn. Pt. II, 80 1–9 (1997).

    Article  Google Scholar 

  27. T. Okada and K. Tanaka, "Photo-designed terahertz devices," Scientific Reports 1, 121 (2011).

    Article  Google Scholar 

  28. S. Busch, B. Scherger, M. Scheller, and M. Koch, "Optically controlled terahertz beam steering and imaging," Opt. Express 37, 1391 (2012).

    Google Scholar 

  29. A. C. Warren, N. Katzenellenbogen, D. Grischkowsky, J. M. Woodall, M. R. Melloch et al., “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs:As epilayers,” Appl. Phys. Lett. 58, 1512 (1991).

    Article  Google Scholar 

  30. I. H. Libon, S. Baumgaertner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76, 2821 (2000).

    Article  Google Scholar 

  31. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).

    Article  Google Scholar 

  32. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163 (1944).

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Janke, J. Gómez Rivas, P. Haring Bolivar, and H. Kurz, “All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures,” Opt. Lett. 30, 2357 (2005).

    Article  Google Scholar 

  34. E. Hendry, M. J. Lockyear, J. Gomez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75, 235305 (2007).

    Article  Google Scholar 

  35. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).

    Article  Google Scholar 

  36. Shelby, R. A., Smith, D. R. & Schultz, S., “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).

    Article  Google Scholar 

  37. Schurig, D., Mock J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F. & Smith, D. R., “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).

    Article  Google Scholar 

  38. Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R. & Padilla, W. J., “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).

    Article  Google Scholar 

  39. W. J. Padilla, A. J. Taylor, C. Highstrete, Mark Lee, and R. D. Averitt, “Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies,” Phys, Rev. Lett. 96, 107401 (2006).

    Article  Google Scholar 

  40. H.-T. Chen, W.J. Padilla, J.M.O. Zide, S.R. Bank, A.C. Gossard, A.J. Taylor, and R.D. Averitt, “Ultrafast Optical Switching of Terahertz Metamaterials Fabricated on ErAs/GaAs Nanoisland Superlattices,” Opt. Lett. 32, 1620 (2007).

    Article  Google Scholar 

  41. A. Degiron, J. J. Mock, and D. R. Smith, “Modulating and tuning the response of metamaterials at the unit cell level,” Opt. Express 15, 1115 (2007).

    Article  Google Scholar 

  42. A. E. Nikolaenko, N. Papasimakis, A. Chipouline, F. D. Angelis, E. D. Fabrizio, and N. I. Zheludev, “THz bandwidth optical switching with carbon nanotube metamaterial,” Opt. Exp. 20, 6068 (2012).

    Article  Google Scholar 

  43. Hou-Tong Chen, John F. O'Hara, Abul K. Azad, Antoinette J. Taylor, Richard D. Averitt, David B. Shrekenhamer & Willie J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials” Nature Photonics 2, 295 (2008).

    Article  Google Scholar 

  44. Nian-Hai Shen, Maria Kafesaki, Thomas Koschny, Lei Zhang, Eleftherios N. Economou, and Costas M. Soukoulis, “Broadband blueshift tunable metamaterials and dual-band switches,” Phys. Rev. B 79, 161102R (2009).

    Article  Google Scholar 

  45. J.-M. Manceau, N.-H. Shen, M. Kafesaki, C. M. Soukoulis, and S. Tzortzakis, “Dynamic response of metamaterials in the terahertz regime: Blueshift tunability and broadband phase modulation ,” Appl. Phys. Lett. 96, 021111 (2010).

    Article  Google Scholar 

  46. D. R. Chowdhury, R. Singh, J. F. O'Hara, H.-T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99, 231101 (2011).

    Article  Google Scholar 

  47. T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84, 3555–3557 (2004).

    Article  Google Scholar 

  48. W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, “Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” Appl. Phys. Lett. 84, 2331–2333 (2004).

    Article  Google Scholar 

  49. W. Knap, Y. Deng, S. Rumyantsev, and M. S. Shur, “Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors,” Appl. Phys. Lett. 81, 4637–4639 (2002).

    Article  Google Scholar 

  50. M. Dyakonov and M. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by DC current,” Phys. Rev. Lett. 71, 2465–2468 (1993).

    Article  Google Scholar 

  51. M. Dyakonov and M. Shur, “Detection, mixing, and frequency multiplication of terahertz radiation by two dimensional electronic fluid,” IEEE Trans. Electron Dev. 43, 380–387 (1996).

    Article  Google Scholar 

  52. V. Ryzhii, I. Khmyrova, and M. Shur, “Terahertz photomixing in quantum well structures using resonant excitation of plasma oscillations,” J. Appl. Phys. 91, 1875–1881 (2002).

    Article  Google Scholar 

  53. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).

    Article  Google Scholar 

  54. H. -T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295 (2008).

    Article  Google Scholar 

  55. W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).

    Article  Google Scholar 

  56. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor. “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).

    Article  Google Scholar 

  57. L. Moller, J. Federici, A. Sinyukov, C. Xie, H. C. Lim, and R. C. Giles, “Data encoding on terahertz signals for communication and sensing,” Opt. Lett. 33, 393 (2008).

    Article  Google Scholar 

  58. E. A. Shaner, J. G. Cederberg, and D. Wasserman, “Electrically tunable extraordinary optical transmission gratings ,” Appl. Phys. Lett. 91, 181110 (2007).

    Article  Google Scholar 

  59. Hou-Tong Chen, Hong Lu, Abul K. Azad, Richard D. Averitt, Arthur C. Gossard, Stuart A. Trugman, John F. O'Hara, and Antoinette J. Taylor, "Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays," Opt. Express 16, 7641-7648 (2008).

    Article  Google Scholar 

  60. Jie Shu, Ciyuan Qiu, Victoria Astley, Daniel Nickel, Daniel M. Mittleman, and Qianfan Xu, "High-contrast terahertz modulator based on extraordinary transmission through a ring aperture," Opt. Express 19, 26666-26671 (2011).

    Article  Google Scholar 

  61. O. Paul, C. Imhof, B. Lagel, S. Wolff, J. Heinrich, S. Hofling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, „Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17, 819 (2009).

    Google Scholar 

  62. H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O'Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).

    Article  Google Scholar 

  63. D. Shrekenhamer,1 A. C. Strikwerda, C. Bingham, R. D. Averitt,S. Sonkusale, and W.J. Padilla, "High speed terahertz modulation from metamaterials with embedded high electron mobility transistors," Opt., Express 19, 9968 (2011).

  64. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nature Nanotechnology 6, 630-634 (2011).

    Article  Google Scholar 

  65. B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, and H. G. Xing, “Unique prospects for graphene-based terahertz modulators,” Appl. Phys. Lett. 99, 113104 (2011).

    Article  Google Scholar 

  66. C.-C. Lee, S. Suzuki, W. Xie, and T. R. Schibli, “Broadband graphene electro-optic modulators with sub-wavelength thickness,” Optics Express 20, 5265-5269 (2012).

    Google Scholar 

  67. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64-67 (2011).

    Article  Google Scholar 

  68. B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nature Communications 3, 1-7 (2012).

    Article  Google Scholar 

  69. M. J. Allen, V. C. Tung, and R. B. Kaner, “Honeycomb carbon: A review of graphene,” Chemical Reviews 110, 132145 (2010).

    Article  Google Scholar 

  70. A. K. Geim, “Graphene: Status and prospects,” Science 324, 1530-1534 (2009).

    Article  Google Scholar 

  71. Seung Hoon Lee, Muhan Choi, Teun-Teun Kim, Seungwoo Lee, Ming Liu, Xiaobo Yin, Hong Kyw Choi, Seung S. Lee, Choon-Gi Choi, Sung-Yool Choi, Xiang Zhang, Bumki Min, "Switching teraherz waves with gate-controlled active graphene metamaterials," arXiv:1203.0743v1 (2012), Nature Mat. 11, 936–941 (2012). doi:10.1038/nmat3433.

  72. J. Gomez Rivas, M. Kuttge, H. Kurz, P. Haring Bolivar, and J. A. Sanchez-Gil, “Low-frequency active surface plasmon optics on semiconductors,” Appl. Phys. Lett. 88, 082106 (2006).

    Article  Google Scholar 

  73. P. Kuzel and F. Kadlec, “Tunable structures and modulators for THz light,” Comptes Rendus Physique 9, 197-214 (2008).

    Article  Google Scholar 

  74. J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable, terahertz metamaterials,” J. Modern Optics 56, 554_557 (2009).

  75. J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284, 3129_3133 (2011).

    Google Scholar 

  76. R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H.-T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36, 1230-1232 (2011).

    Article  Google Scholar 

  77. T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 5947 (2009).

    Article  Google Scholar 

  78. T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).

    Article  Google Scholar 

  79. M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D.-S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10, 2064_2068 (2010).

  80. M. D. Gold_am, T. Driscoll, B. Chapler, O. Khatib, N. M. Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. D. Ventra, and D. N. Basov, Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99, 044103 (2011).

    Google Scholar 

  81. Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, and Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97, 021111 (2010).

    Article  Google Scholar 

  82. H.-T. Chen, H. Yang, R. Singh, J. F. O'Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).

    Article  Google Scholar 

  83. J. Wu, B. Jin, Y. Xue, C. Zhang, H. Dai, L. Zhang, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Tuning of superconducting niobium nitride terahertz metamaterials,” Opt. Express 19, 12021_1202 (2011).

  84. B. Jin, C. Zhang, S. Engelbrecht, A. Pimenov, J. Wu, Q. Xu, C. Cao, J. Chen, W. Xu, L. Kang, and P. Wu, “Low loss and magnetic _eld-tunable superconducting terahertz metamaterial,” Opt. Express 18, 17504_17509 (2010).

  85. H. Tao, A.C. Strikwerda, K. Fan, W.J. Padilla, X. Zhang, R.D. Averitt, “Reconfigurable Terahertz Metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).

    Article  Google Scholar 

  86. Hu Tao, W. J. Padilla, X. Zhang, R. D. Averitt, “Recent Progress in Electromagnetic Metamaterial Devices for Terahertz Applications”, (invited) IEEE J. Sel. Top. Quan. Opt. 17, 1077-260 (2011).

  87. M. Golosovsky, Y. Neve-Oz, and D. Davidov, “Magnetic-field-tunable photonic stop band in a threedimensional array of conducting spheres,” Phys. Rev. B 71, 195105 (2005).

    Article  Google Scholar 

  88. J. Han, A. Lakhtakia, and C.-W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability,” Opt. Express 16, 14390-14396 (2008).

    Article  Google Scholar 

  89. B. Jin, C. Zhang, S. Engelbrecht, A. Pimenov, J. Wu, Q. Xu, C. Cao, J. Chen, W. Xu, L. Kang, and P. Wu, “Low loss and magnetic field-tunable superconducting terahertz metamaterial,” Opt. Express 18, 17504-17509 (2010).

    Article  Google Scholar 

  90. F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, “Magnetic control of negative permeability metamaterials based on liquid crystals,” Appl. Phys. Lett. 92, 193104 (2008).

    Article  Google Scholar 

  91. M. Gorkunov and M. Lapine, “Tuning of a nonlinear metamaterial band gap by an external magnetic field,” Phys. Rev. B 70, 235109 (2004).

    Article  Google Scholar 

  92. B. Ozbey and O. Aktas, “Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers,” Opt. Express 19, 5741-5752 (2011).

    Article  Google Scholar 

  93. L. Kang, Q. Zhao, H. Zhao, and J. Zhou, “Magnetic tuning of electrically resonant metamaterial with inclusion of ferrite,” Appl. Phys. Lett. 93, 171909 (2008).

    Article  Google Scholar 

  94. L. Kang, Q. Zhao, H. Zhao, and J. Zhou, “Ferrite-based magnetically tunable left-handed metamaterial composed of srrs and wires,” Opt. Express 16, 17269-17275 (2008).

    Article  Google Scholar 

  95. H. Zhao, J. Zhou, L. Kang, and Q. Zhao, “Tunable two-dimensional left-handed material consisting of ferrite rods and metallic wires,” Opt. Express 17, 13373-13380 (2009).

    Article  Google Scholar 

  96. L. Kang, Q. Zhao, H. Zhao, and J. Zhou, “Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods,” Opt. Express 16, 8825 (2008).

    Article  Google Scholar 

  97. I. V. Shadrivov, A. B. Kozyrev, D. W. van der Weide, and Y. S. Kivshar, “Nonlinear magnetic metamaterials,“ Opt. Express 16, 20266_20271 (2008).

  98. B. Wang, J. Zhou, T. Koschny, and C. Soukoulis, "Nonlinear properties of split-ring resonators," Opt. Express 16, 16058-16063 (2008).

    Article  Google Scholar 

  99. D. Huang, E. Poutrina, and D. R. Smith, “Analysis of the power dependent tuning of a varactor-loaded metamaterial at microwave frequencies,” Appl. Phys. Lett. 96, 104104 (2010).

    Article  Google Scholar 

  100. J. D. Joannopoulos, S. G. Johnson, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, second edition (Princeton Univ. Press, 2008).

  101. E. Özbay, B. Temelkuran, “Reflection properties and defect formation in photonic crystals,” Appl. Phys. Lett., 69, 743(1996).

    Article  Google Scholar 

  102. H. Němec, L. Duvillaret, F. Quemeneur, and P. Kužel, “Defect modes caused by twinning in one-dimensional photonic crystals,” J. Opt. Soc. Am. B, 21, 548-553 (2004).

    Article  Google Scholar 

  103. K. Sakoda, Optical Properties of Photonic Crystals, Springer, Berlin, 2001.

    Google Scholar 

  104. L. Fekete, F. Kadlec, H. Němec, P. Kužel, “Fast one-dimensional photonic crystal modulators for the terahertz range,” Opt. Express, 15, 8898-8912 (2007).

    Article  Google Scholar 

  105. L. Fekete, F. Kadlec, P. Kužel, and H. Němec, “Ultrafast opto-terahertz photonic crystal modulator,” Opt. Lett. 32, 680 (2007).

    Article  Google Scholar 

  106. H. Chen, J. Su, J. Wang, X. Zhao, “Optically-controlled high-speed terahertz wave modulator based on nonlinear photonic crystals,” Opt. Express, 19, 3599-3603 (2011).

    Article  Google Scholar 

  107. J. Li, “Terahertz modulator using photonic crystals,” Optics Communications, 269(1), 98-101 (2007).

    Article  Google Scholar 

  108. J. Li, J. He, Z. Hong, “Terahertz wave switch based on silicon photonic crystals,” Appl. Opt., 46(22), 5034-5037 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Rahm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahm, M., Li, JS. & Padilla, W.J. THz Wave Modulators: A Brief Review on Different Modulation Techniques. J Infrared Milli Terahz Waves 34, 1–27 (2013). https://doi.org/10.1007/s10762-012-9946-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-012-9946-2

Keywords

Navigation