Skip to main content
Log in

Spectral sensitivity of graded composition AlGaAs/GaAs nanowire photodetectors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A photodetection model for AlGaAs/GaAs nanowire photodetectors with graded composition is developed based on the numerical solution of coupled Poisson and continuity equations. Photocurrents and spectral sensitivities of nanowire photodetectors have been simulated as a function of Al content range, the wavelength of the incident light, the length of the nanowire, and contact types. The results demonstrate Ohmic–Schottky devices have the highest sensitivities among the four types of nanowire devices, which can be attributed to the strong built-in electric field induced by the graded composition and the dominant unidirectional built-in electric field due to the Schottky barrier. Schottky–Schottky devices show the lowest sensitivities due to the additional blocking effect of the Schottky barrier. The optimum nanowire length in which an Ohmic–Schottky structured nanowire photodetector can achieve maximum sensitivity is 7.4 μm for a nanowire with a linearly graded Al content range of 0–0.4 (x Al = 0.4). The optimum nanowire lengths for Ohmic–Ohmic (x Al = 0.3), Schottky–Schottky (x Al = 0.1), and Schottky–Ohmic (x Al = 0.0) nanowire devices are 6.5, 3.5, and 11 μm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X.Y. Chen, Y.G. Zhang, Y. Gu, L. Zhou, Y.Y. Cao, X. Fang, H. Li, J. Cryst. Growth 393, 75–80 (2014)

    Article  ADS  Google Scholar 

  2. S. Adhikary, S. Chakrabarti, Thin Solid Films 552, 146–149 (2013)

    Article  ADS  Google Scholar 

  3. G.M. Ali, J.C. Moore, A.K. Kadhim, C. Thompson, Sens. Actuators A: Phys. 209, 16–23 (2014)

    Article  Google Scholar 

  4. C. Blaksley, P. Gorodetzky, Nucl. Instrum. Methods Phys. Res., Sect. A 764, 198–205 (2014)

    Article  ADS  Google Scholar 

  5. Y.Y. Zeng, Z.Z. Ye, B. Lu, W. Dai, X.H. Pan, Appl. Phys. A 122, 296 (2016)

    Article  ADS  Google Scholar 

  6. H.Q. Li, X. Wang, J.Q. Xu, Q. Zhang, Y. Bando, D. Golberg, Y. Ma, T.Y. Zhai, Adv. Mater. 25, 3017–3037 (2013)

    Article  Google Scholar 

  7. C.Y. Yan, J.X. Wang, X. Wang, W.B. Kang, M.Q. Cui, C.Y. Foo, P.S. Lee, Adv. Mater. 26, 943–950 (2014)

    Article  Google Scholar 

  8. Q. Yang, Y. Liu, Z.T. Li, Z.Y. Yang, X. Wang, Z.L. Wang, Angew. Chem. Int. Ed. 124, 6549–6552 (2012)

    Article  Google Scholar 

  9. Z. Liu, T. Luo, B. Liang, G. Chen, G. Yu, X.M. Xie, D. Chen, G.Z. Shen, Nano Res. 6, 775–783 (2013)

    Article  ADS  Google Scholar 

  10. G.K. Flaric, F. Al-Dirini, F.M. Hossain, T.C. Nguyen, E. Skafidas, Appl. Phys. A 115, 491–493493 (2014)

    ADS  Google Scholar 

  11. J.S. Miao, W.D. Hu, N. Guo, Z.Y. Lu, X.Q. Liu, L. Liao, P.P. Chen, T. Jiang, S.W. Wu, J.C. Ho, L. Wang, X.S. Chen, W. Lu, Small 11, 936–942 (2015)

    Article  Google Scholar 

  12. R.S. Chen, H.Y. Chen, C.Y. Lu, K.H. Chen, C.P. Chen, L.C. Chen, Y.J. Yang, Appl. Phys. Lett. 91, 223106 (2007)

    Article  ADS  Google Scholar 

  13. E.M. Gallo, G.N. Chen, M. Currie, T. McGuckin, P. Prete, N. Lovergine, B. Nabet, J.E. Spanier, Appl. Phys. Lett. 98, 241113 (2011)

    Article  ADS  Google Scholar 

  14. H. Xia, Z.Y. Lu, T.X. Li, P. Parkinson, Z.M. Liao, F.H. Liu, W. Lu, W.D. Hu, P.P. Chen, H.Y. Xu, J. Zou, C. Jagadish, ACS Nano 6, 6005–6013 (2012)

    Article  Google Scholar 

  15. J.S. Miao, W.D. Hu, N. Guo, Z.Y. Lu, X.M. Zou, L. Liao, S.X. Shi, P.P. Chen, Z.Y. Fan, J.C. Ho, T.X. Li, X.S. Chen, W. Lu, ACS Nano 8, 3628–3635 (2014)

    Article  Google Scholar 

  16. T. Luo, B. Liang, Z. Liu, X.M. Xie, Z. Lou, G.Z. Shen, Sci. Bull. 60, 101–108 (2015)

    Article  Google Scholar 

  17. L. Li, S.M. Yang, W.X. Jing, Z.D. Jiang, F. Han, Sens. Actuators A: Phys. 232, 292–298 (2015)

    Article  Google Scholar 

  18. Y. Cheng, J.J. Zou, M. Wan, W.L. Wang, X.C. Peng, L. Feng, W.J. Deng, Z.F. Zhu, Chin. Phys. Lett. 32, 058102 (2015)

    Article  ADS  Google Scholar 

  19. D.Y. Fu, J.J. Zou, K.V. Wang, R. Zhang, D. Yu, J.Q. Wu, Nano Lett. 11, 3809–3815 (2011)

    Article  ADS  Google Scholar 

  20. X.J. Ding, X.W. Ge, J.J. Zou, Y.J. Zhang, X.C. Peng, W.J. Deng, Z.P. Chen, W.J. Zhao, B.K. Chang, Opt. Commun. 367, 149–154 (2016)

    Article  ADS  Google Scholar 

  21. Y.A. Goldberg, in Handbook Series on Semiconductor Parameters, vol. 2, ed. by M. Levinshtein, S. Rumyantsev, M. Shur (World Scientific, London, 1999), pp. 1–36

    Chapter  Google Scholar 

  22. H.A. Zarem, J.A. Lebens, K.B. Nordstrom, P.C. Sercel, S. Sanders, L.E. Eng, A. Yariv, K.J. Vahala, Appl. Phys. Lett. 55, 2622–2624 (1989)

    Article  ADS  Google Scholar 

  23. D.E. Aspnes, S.M. Kelso, R.A. Logan, R. Bhat, J. Appl. Phys. 60, 754–767 (1986)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61261009, 61661002), the Foundation of Training Academic and Technical Leaders for Main Majors of Jiangxi Province, China (Grant No. 20142BCB22006), the Key Program of Science and Technology Research of Ministry of Education, China (Grant No. 212090), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20133ACB20005), and the Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, China (Grant No. NRE1414). We thank Ding Gong for simulation assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jijun Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, J., Zhao, W., Ding, X. et al. Spectral sensitivity of graded composition AlGaAs/GaAs nanowire photodetectors. Appl. Phys. A 122, 1003 (2016). https://doi.org/10.1007/s00339-016-0532-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0532-7

Keywords

Navigation