Skip to main content
Log in

Analysis of Current–Voltage Characteristics in UV AlGaN Heterostructure FPAs

  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

UV visible-blind and solar-blind 320 × 256 photodiode arrays based on AlxGa1 – xN heteroepitaxial structures (AlGaN HES) and sensitive in the near-ultraviolet range of 0.2–0.4 μm have been created and studied. The AlGaN HES were grown by organometallic vapor deposition (MOCVD) and molecular beam epitaxy (MBE) on sapphire substrates. To reduce structural defects, the state of the surface and the surface layer of epipolished sapphire substrates was investigated, and a finishing technology was developed. UV FPAs in the AlGaN HES were produced by ion etching. The dark current components for AlGaN photodiodes were simulated. The main dark current components, such as generation–recombination, shunting leakage, hopping conductivity, and Poole–Frenkel components, are calculated. The possibility of achieving photoelectric parameters on the level of the best foreign counterparts is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. I. D. Burlakov, K. O. Boltar’, N. I. Yakovleva, N. V. Kravchenko, M. V. Sednev, D. V. Smirnov, and N. A. Irodov, Usp. Prikl. Fiz. 1, 344 (2013).

    Google Scholar 

  2. P. Lamarre et al., Mater. Res. Soc. Symp. 639 (2001).

  3. M. B. Reine et al., Proc. of SPIE 6119, 611901-1 (2006).

    Article  Google Scholar 

  4. J. P. Long et al., Opto-Electron. Rev. 10 (4), 251 (2002).

    Google Scholar 

  5. Yu. G. Nosov and L. I. Derkachenko, Tech. Phys. 48, 1354 (2002).

    Article  Google Scholar 

  6. K. Uchida, A. Watanabe, F. Yano, M. Koguchi, T. Tanaka, and S. Minagawa, J. Appl. Physiol., No. 79, 3487 (1996).

  7. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, in Proc. ICNS’97,Tokushima, Japan, 1997, Ed. by K. Hiramatsu, p. 444; J. Cryst. Growth 189/190, 820 (1998).

  8. D. W. Shaw, J. Electrochem. Soc. 113, 904 (1966).

    Article  Google Scholar 

  9. R. W. McClelland, C. O. Bolzer, and J. C. C. Fan, Appl. Phys. Lett. 37, 560 (1980).

    Article  Google Scholar 

  10. X.-Q. Shen, S. Tanaka, S. Iwai, and Y. Aoyagi, Appl. Phys. Lett. 72, 344 (1998).

    Article  Google Scholar 

  11. T. V. Malin, A. M. Gilinskii, V. G. Mansurov, D. Yu. Protasov, A. K. Shestakov, E. B. Yakimov, and K. S. Zhuravlev, Tech. Phys. 60, 546 (2015).

    Article  Google Scholar 

  12. K. S. Zhuravlev, V. G. Mansurov, D. Yu. Protasov, A. Y. Polyakov, N. B. Smirnov, and A. V. Govorkov, J. Appl. Phys. 105, 113712 (2009).

    Article  Google Scholar 

  13. S. Haffouz, B. Beaumont, P. Vennegues, and P. Gibart, Phys. Status Solidi A 176, 677 (1999).

    Article  Google Scholar 

  14. D. J. Eagleasham, F. C. Unterwald, and D. C. Jacobson, Phys. Rev. Lett. 70, 966 (1993).

    Article  Google Scholar 

  15. J. Han, T.-B. Ng, R. M. Biefeld, M. H. Crawford, and D. M. Follstaedt, Appl. Phys. Lett. 71, 3114 (1997).

    Article  Google Scholar 

  16. S. Haffouz, V. Kirilyuk, P. R. Hageman, L. Macht, J. L. Weyher, and P. K. Larsen, Appl. Phys. Lett. 79, 2390 (2001).

    Article  Google Scholar 

  17. S. Sakai, T. Wang, Y. Morishima, and Y. Naoi, J. Cryst. Growt 221, 334 (2000).

    Article  Google Scholar 

  18. T. Bottcher, S. Einfeldt, S. Figge, R. Chierchia, H. Heinke, D. Hommel, and J. S. Speck, Appl. Phys. Lett. 78, 1976 (2001).

    Article  Google Scholar 

  19. H. K. Cho, J. Y. Lee, K. S. Kim, G. M. Yang, J. H. Song, and P. W. Yu, J. Appl. Phys. 89, 2617 (2000).

    Article  Google Scholar 

  20. K. S. Kim, C. S. Oh, K. J. Lee, G. M. Yang, C.‑H. Hong, K. Y. Lim, H. J. Lee, and A. Yoshikawa, J. Appl. Phys. 85, 8441 (1999).

    Article  Google Scholar 

  21. H. K. Cho, J. Y. Lee, K. S. Kim, G. M. Yang, J. H. Song, and P. W. Yu, J. Appl. Phys. 89, 2671 (2001).

    Article  Google Scholar 

  22. T. Wang, T. Shirahama, H. B. Sun, H. X. Wang, J. Bai, S. Sakai, and H. Misawa, Appl. Phys. Lett. 76, 2220 (2000).

    Article  Google Scholar 

  23. Tadao Hashimoto, Masaaki Yuri, Masahiro Ishida, Yoshitami Terakoshi, Osamu Imafuji, Takashi Sugino, and Kunio Itoh, J. Appl. Phys. 38, 6605 (1999).

    Article  Google Scholar 

  24. H. Z. Xu, K. Takahashi, C. X. Wang, Z. G. Wang, Y. Okada, M. Kawabe, I. Harrison, and C. T. Foxon, J. Cryst. Growt 222, 110 (2001).

    Article  Google Scholar 

  25. Takayuki Yuasa, Yoshihiro Ueta, Yuhzoh Tsuda, Atushi Ogawa, Mototaka Taneya, and Katsutoshi Takao, J. Appl. Phys. 38, L703 (1999).

    Article  Google Scholar 

  26. S. Figge, T. Bottcher, S. Einfeldt, and D. Hommel, J. Cryst. Growt 221, 262 (2000).

    Article  Google Scholar 

  27. Shigeo Yamaguchi, Michihiko Kariya, Masayoshi Kosaki, Yohei Yukawa, Shugo Nitta, Hiroshi Amano, and Isamu Akasaki, J. Appl. Phys. 89, 7820 (2001).

    Article  Google Scholar 

  28. T. Asano, K. Yanashima, T. Asatsuma, T. Hino, T. Yamaguchi, S. Tomiya, K. Funato, T. Kobayashi, and M. Ikeda, Phys. Status Solidi A 176, 23 (1999).

    Article  Google Scholar 

  29. B. L. Liu, M. Lachab, A. Jia, A. Yoshikawaa, and K. Takahashi, J. Cryst. Growt 234, 637 (2002).

    Article  Google Scholar 

  30. D. Huang, M. A. Reshchikov, F. Yun, T. King, A. A. Baski, and H. Morkoc, Appl. Phys. Lett. 80, 216 (2002).

    Article  Google Scholar 

  31. M. Hadis, Handbook of Nitride Semiconductors and Devices, Vol. 2: Electronic and Optical Processes (Viley, 2008),

  32. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981; Mir, Moscow, 1984).

  33. M. B. Reine, et al., Proc. SPIE 6119, 611901-1 (2006).

    Article  Google Scholar 

  34. I. Cohen, T. Zhu, L. Liu, M. Murphy, M. Pophristic, M. Pabisz, M. Gottfried, B. Shelton, B. Peres, A. Ceruzzi, and R. Stall, IEEE APEC, Austin, 311–314 (2005).

    Google Scholar 

  35. R. McClintock et al., Proc. SPIE 4288 (2001).

  36. E. H. Rhoderick and R. H. Williams, Metal Semiconductor Contacts (Univ. Press, Oxford, 1988).

    Google Scholar 

  37. J. M. Shah et al., J. Appl. Phys. 94 (4) (2003).

  38. L. Hirsch and A. S. Barriere, J. Appl. Phys. 94, 5014 (2003).

    Article  Google Scholar 

  39. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1971; Mir, Moscow, 1982).

  40. M. Pollak et al., J. Phys. C.: Solid State Phys. 9, 2339 (1983).

    Article  Google Scholar 

  41. H. Temkin, Ultraviolet Photodetectors Based on GaN and AlGaN, in Recent and Evolving Advanced Semiconductor and Organic Nano-Technologies, Nanoscale Electronics and Optoelectronics (Academic, San Diego, 2003), Vol. 1.

    Google Scholar 

  42. E. Rozensher and V. Vinter, Optoelectronique (Dunod, Paris, 2002; Tekhnosfera, Moscow, 2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. O. Boltar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iakovleva, N.I., Nikonov, A., Boltar, K.O. et al. Analysis of Current–Voltage Characteristics in UV AlGaN Heterostructure FPAs. J. Commun. Technol. Electron. 64, 1046–1054 (2019). https://doi.org/10.1134/S106422691909016X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422691909016X

Keywords:

Navigation