Skip to main content
Log in

Modification and preparation of four natural hydrogels and their application in biopharmaceutical delivery

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Hydrogels possess a unique three-dimensional structure into which many drugs can be incorporated. The hydrogels slow down the release rate of drugs, protect them from external factors and improve their stability. Thus, hydrogels have been widely used in delivering biological products in recent years. The characteristics of natural hydrogel materials are low toxicity, easily accessible and sufficient resources. After modification, natural hydrogels can be more ductile and avoid the defects of brittle quality. Chemical modification of the groups in natural hydrogels improves some of their sensitivity toward pH, temperature and light. Chitosan, hyaluronic acid, gelatin, and sodium alginate are four common natural polymers widely used in medicine and health care. A systematic review of the above four polymer materials is essential for an in-depth understanding of their functions and further development. This review summarizes (1) the characteristics of chitosan, hyaluronic acid, gelatin and sodium alginate these four polymers, (2) their derivatives and mechanisms, (3) the crosslinking mechanisms, and (4) the applications in the delivery of biological products. This review will be a comprehensive resource on these polymers and will be helpful to the researchers who are interested in developing drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. El-Halah A, Machado D, Gonzalez N et al (2019) Use of super absorbent hydrogels derivative from acrylamide with itaconic acid and itaconates to remove metal ions from aqueous solution. J Appl Polym Sci. https://doi.org/10.1002/app.46999

    Article  Google Scholar 

  2. Ochi M, Ida J, Matsuyama T et al (2018) Thermoresponsive-interpenetrating polymer network hydrogels for heavy metal ion recovery. J Appl Polym Sci. https://doi.org/10.1002/app.46701

    Article  Google Scholar 

  3. Heimbuck AM, Priddy-Arrington TR, Sawyer BJ et al (2019) Effects of post-processing methods on chitosan-genipin hydrogel properties. Mater Sci Eng C, Mater Biol Appl 98:612–618. https://doi.org/10.1016/j.msec.2018.12.119

    Article  CAS  PubMed  Google Scholar 

  4. Yu L, Ding J (2008) Injectable hydrogels as unique biomedical materials. Chem Soc Rev 37:1473–1481. https://doi.org/10.1039/b713009k

    Article  CAS  PubMed  Google Scholar 

  5. Liu Y, Sui Y, Liu C et al (2018) A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing. Carbohyd Polym 188:27–36. https://doi.org/10.1016/j.carbpol.2018.01.093

    Article  CAS  Google Scholar 

  6. Chen P, Ning L, Qiu P et al (2019) Photo-crosslinked gelatin-hyaluronic acid methacrylate hydrogel-committed nucleus pulposus-like differentiation of adipose stromal cells for intervertebral disc repair. J Tissue Eng Regen Med 13:682–693. https://doi.org/10.1002/term.2841

    Article  CAS  PubMed  Google Scholar 

  7. Jeong JO, Park JS, Kim EJ et al (2019) Preparation of radiation cross-linked poly(acrylic acid) hydrogel containing metronidazole with enhanced antibacterial activity. Int J Mol Sci 21:187. https://doi.org/10.3390/ijms21010187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tasnim T, Adkins M D, Lim T et al (2021) Thermally tunable hydrogel crosslinking mediated by temperature sensitive liposome. Biomed Mater (Bristol, England). https://doi.org/10.1088/1748-605X/ac246c

  9. Gao LX, Chen JL et al (2015) Electro-response characteristic of starch hydrogel crosslinked with Glutaraldehyde. J Biomater Sci Polym Ed 26:545–557. https://doi.org/10.1080/09205063.2015.1037587

    Article  CAS  PubMed  Google Scholar 

  10. Tsai CC, Hong YJ, Lee RJ et al (2019) Enhancement of human adipose-derived stem cell spheroid differentiation in an in situ enzyme-crosslinked gelatin hydrogel. J Mater Chem B 7:1064–1075. https://doi.org/10.1039/c8tb02835d

    Article  CAS  PubMed  Google Scholar 

  11. Wang J, Youngblood R, Cassinotti L et al (2021) An injectable PEG hydrogel controlling neurotrophin-3 release by affinity peptides. J Controll release: Off J Controll Release Soc 330:575–586. https://doi.org/10.1016/j.jconrel.2020.12.045

    Article  CAS  Google Scholar 

  12. Yi FL, Guo FL, Li YQ et al (2021) Polyacrylamide hydrogel composite e-skin fully mimicking human skin. ACS Appl Mater Interfaces 13:32084–32093. https://doi.org/10.1021/acsami.1c05661

    Article  CAS  PubMed  Google Scholar 

  13. Kandile NG, Mohamed HM (2019) Chitosan nanoparticle hydrogel based sebacoyl moiety with remarkable capability for metal ion removal from aqueous systems. Int J Biol Macromol 122:578–586. https://doi.org/10.1016/j.ijbiomac.2018.10.198

    Article  CAS  PubMed  Google Scholar 

  14. Krüger M, Oosterhoff LA, Wolferen ME van et al (2020) Cellulose nanofibril hydrogel promotes hepatic differentiation of human liver organoids. Adv Healthc Mater. https://doi.org/10.1002/adhm.201901658

  15. Abbasi AR, Sohail M, Minhas MU et al (2020) Bioinspired sodium alginate based thermosensitive hydrogel membranes for accelerated wound healing. Int J Biol Macromol 155:751–765. https://doi.org/10.1016/j.ijbiomac.2020.03.248

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y, Weng R, Wang W (2020) Tunable physical and mechanical properties of gelatin hydrogel after transglutaminase crosslinking on two gelatin types. Int J Biol Macromol 162:405–413. https://doi.org/10.1016/j.ijbiomac.2020.06.185

    Article  CAS  PubMed  Google Scholar 

  17. Park SH, Park JY, Ji YB (2020) An injectable click-crosslinked hyaluronic acid hydrogel modified with a BMP-2 mimetic peptide as a bone tissue engineering scaffold. Acta Biomater 117:108–120. https://doi.org/10.1016/j.actbio.2020.09.013

    Article  CAS  PubMed  Google Scholar 

  18. Jiang Y, Wang Y, Li Q et al (2020) Natural polymer-based stimuli-responsive hydrogels. Curr Med Chem 27:2631–2657. https://doi.org/10.2174/0929867326666191122144916

    Article  CAS  PubMed  Google Scholar 

  19. Liu J, Li J, Yu F (2020) In situ forming hydrogel of natural polysaccharides through Schiff base reaction for soft tissue adhesive and hemostasis. Int J Biol Macromol 147:653–666. https://doi.org/10.1016/j.ijbiomac.2020.01.005

    Article  CAS  PubMed  Google Scholar 

  20. Sultan MT, Lee OJ, Kim SH (2018) Silk fibroin in wound healing process. Adv Exp Med Biol 1077:115–126. https://doi.org/10.1007/978-981-13-0947-2_7

    Article  CAS  PubMed  Google Scholar 

  21. Chaudhary J, Thakur S, Sharma M (2020) Development of biodegradable agar-agar/gelatin-based superabsorbent hydrogel as an efficient moisture-retaining agent. Biomolecules 10:939. https://doi.org/10.3390/biom10060939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee J, Ko JH, Mansfield KM (2018) Glucose-responsive trehalose hydrogel for insulin stabilization and delivery. Macromol Biosci. https://doi.org/10.1002/mabi.201700372

    Article  PubMed  PubMed Central  Google Scholar 

  23. Carnes ME, Gonyea CR, Mooney RG (2020) Pins horseradish peroxidase-catalyzed crosslinking of fibrin microthread scaffolds. Tissue engineering. Part C, Methods 26:317–331. https://doi.org/10.1089/ten.TEC.2020.0083

    Article  CAS  Google Scholar 

  24. Singh B, Singh B (2020) Graft copolymerization of polyvinylpyrollidone onto Azadirachta indica gum polysaccharide in the presence of crosslinker to develop hydrogels for drug delivery applications. Int J Biol Macromol 159:264–275. https://doi.org/10.1016/j.ijbiomac.2020.05.091

    Article  CAS  PubMed  Google Scholar 

  25. Censi R, Di Martino P, Vermonden T et al (2012) Hydrogels for protein delivery in tissue engineering. J Controll Release: Offic J Controll Release Soc 161:680–692. https://doi.org/10.1016/j.jconrel.2012.03.002

    Article  CAS  Google Scholar 

  26. Smart AL, Gaisford S, Basit AW (2014) Oral peptide and protein delivery: intestinal obstacles and commercial prospects. Expert Opin Drug Deliv 11:1323–1335. https://doi.org/10.1517/17425247.2014.917077

    Article  CAS  PubMed  Google Scholar 

  27. Chowhan A, Giri TK (2020) Polysaccharide as renewable responsive biopolymer for in situ gel in the delivery of drug through ocular route. Int J Biol Macromol 150:559–572. https://doi.org/10.1016/j.ijbiomac.2020.02.097

    Article  CAS  PubMed  Google Scholar 

  28. Li T, Bao Q, Shen J et al (2020) Mucoadhesive in situ forming gel for oral mucositis pain control. Int J Pharm 580:119238. https://doi.org/10.1016/j.ijpharm.2020.119238

    Article  CAS  PubMed  Google Scholar 

  29. Kang PL, Chang JS, Manousakas I et al (2011) Development and assessment of hemostasis chitosan dressings. Carbohyd Polym 85:565–570. https://doi.org/10.1016/j.carbpol.2011.03.015

    Article  CAS  Google Scholar 

  30. Dowling MB, Kumar R, Keibler MA et al (2011) A self-assembling hydrophobically modified chitosan capable of reversible hemostatic action. Biomaterials 32:3351–3357. https://doi.org/10.1016/j.biomaterials.2010.12.033

    Article  CAS  PubMed  Google Scholar 

  31. Fathi M, Zangabad PS, Majidi S (2017) Stimuli-responsive chitosan-based nanocarriers for cancer therapy. Bioimpacts 7:269–277. https://doi.org/10.15171/bi.2017.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Davachi SM, Shekarabi AS (2018) Corrigendum to “Preparation and characterization of antibacterial, eco-friendly edible nanocomposite films containing Salvia macrosiphon and nanoclay.” Int J Biol Macromol 113:66–72. https://doi.org/10.1016/j.ijbiomac.2018.05.049

    Article  CAS  PubMed  Google Scholar 

  33. Al-Remawi M (2015) Application of N-hexoyl chitosan derivatives with high degree of substitution in the preparation of super-disintegrating pharmaceutical matrices. J Drug Deliv Sci Technol 29:31–41

    Article  CAS  Google Scholar 

  34. Zhang Z, Jin F, Wu Z et al (2017) O-acylation of chitosan nanofibers by short-chain and long-chain fatty acids. Carbohyd Polym 177:203–209. https://doi.org/10.1016/j.carbpol.2017.08.132

    Article  CAS  Google Scholar 

  35. Cai J, Dang Q, Liu C (2015) Preparation and characterization of N-benzoyl-O-acetyl-chitosan. Int J Biol Macromol 77:52–58. https://doi.org/10.1016/j.ijbiomac.2015.03.007

    Article  CAS  PubMed  Google Scholar 

  36. Dang Q, Zhang Q, Liu C (2019) Decanoic acid functionalized chitosan: Synthesis, characterization, and evaluation as potential wound dressing material. Int J Biol Macromol 139:1046–1053. https://doi.org/10.1016/j.ijbiomac.2019.08.083

    Article  CAS  PubMed  Google Scholar 

  37. Nakhjiri MT, Marandi GB, Kurdtabar M (2018) Poly(AA-co-VPA) hydrogel cross-linked with N-maleyl chitosan as dye adsorbent: isotherms, kinetics and thermodynamic investigation. Int J Biol Macromol 117:152–166. https://doi.org/10.1016/j.ijbiomac.2018.05.140

    Article  CAS  PubMed  Google Scholar 

  38. Wang Q, Kong M, An Y et al (2013) Hydroxybutyl chitosan thermo-sensitive hydrogel: a potential drug delivery system. J Mater Sci 48:5614–5623. https://doi.org/10.1007/s10853-013-7356-z

    Article  CAS  Google Scholar 

  39. Zhao D, Yu S, Sun B (2018) Biomedical applications of chitosan and its derivative nanoparticles. Polymers 10:462. https://doi.org/10.3390/polym10040462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kurniasih M, Purwati CT (2018) Carboxymethyl chitosan as an antifungal agent on gauze. Int J Biol Macromol 119:166–171. https://doi.org/10.1016/j.ijbiomac.2018.07.038

    Article  CAS  PubMed  Google Scholar 

  41. Fan L, Zou S, Ge H et al (2016) Preparation and characterization of hydroxypropyl chitosan modified with collagen peptide. Int J Biol Macromol 93:636–643. https://doi.org/10.1016/j.ijbiomac.2016.07.093

    Article  CAS  PubMed  Google Scholar 

  42. Onésippe C, Lagerge S (2008) Studies of the association of chitosan and alkylated chitosan with oppositely charged sodium dodecyl sulfate. Colloids Surf, A 330:201–206. https://doi.org/10.1016/j.colsurfa.2008.07.054

    Article  CAS  Google Scholar 

  43. Kritchenkov AS, Zhaliazniak NV, Egorov AR (2020) Chitosan derivatives and their based nanoparticles: ultrasonic approach to the synthesis, antimicrobial and transfection properties. Carbohyd Polym 242:116478. https://doi.org/10.1016/j.carbpol.2020.116478

    Article  CAS  Google Scholar 

  44. Kumar R, Sirvi A, Kaur S et al (2020) Polymeric micelles based on amphiphilic oleic acid modified carboxymethyl chitosan for oral drug delivery of bcs class iv compound: Intestinal permeability and pharmacokinetic evaluation. Eur J Pharm Sci 153:105466. https://doi.org/10.1016/j.ejps.2020.105466

    Article  CAS  PubMed  Google Scholar 

  45. Li S, Hu L, Li D et al (2019) Carboxymethyl chitosan-based nanogels via acid-labile ortho ester linkages mediated enhanced drug delivery. Int J Biol Macromol 129:477–487. https://doi.org/10.1016/j.ijbiomac.2019.02.072

    Article  CAS  PubMed  Google Scholar 

  46. Wei L, Mi Y, Zhang J et al (2019) Evaluation of quaternary ammonium chitosan derivatives differing in the length of alkyl side-chain: synthesis and antifungal activity. Int J Biol Macromol 129:1127–1132. https://doi.org/10.1016/j.ijbiomac.2018.09.099

    Article  CAS  PubMed  Google Scholar 

  47. Sahariah P, Másson M, Meyer RL (2018) Quaternary ammoniumyl chitosan derivatives for eradication of staphylococcus aureus biofilms. Biomacromol 19:3649–3658. https://doi.org/10.1021/acs.biomac.8b00718

    Article  CAS  Google Scholar 

  48. Baumann H, Faust V (2001) Concepts for improved regioselective placement of O-sulfo, N-sulfo, N-acetyl, and N-carboxymethyl groups in chitosan derivatives. Carbohyd Res 331:43–57. https://doi.org/10.1016/s0008-6215(01)00009-x

    Article  CAS  Google Scholar 

  49. Wang X, Yao J, Zhou JP (2010) Synthesis and evaluation of chitosan-graft-polyethylenimine as a gene vector. Pharmazie 65:572–579

    CAS  PubMed  Google Scholar 

  50. Keshk S, Ramadan AM, Al-Sehemi AG (2017) Bondock. An unexpected reactivity during periodate oxidation of chitosan and the affinity of its 2, 3-di-aldehyde toward sulfa drugs. Carbohyd Polym 175:565–574. https://doi.org/10.1016/j.carbpol.2017.08.027

    Article  CAS  Google Scholar 

  51. Li A, Xue Q, Ye Y et al (2020) Study on TEMPO-mediated oxidation of N-succinyl chitosan and the water retention property. Molecules (Basel, Switzerland) 25:4698. https://doi.org/10.3390/molecules25204698

    Article  CAS  PubMed  Google Scholar 

  52. Korica M, Peršin Z, Trifunović S (2019) Influence of different pretreatments on the antibacterial properties of chitosan functionalized viscose fabric: TEMPO oxidation and coating with TEMPO oxidized cellulose nanofibrils. Materials (Basel, Switzerland) 12:3144. https://doi.org/10.3390/ma12193144

    Article  CAS  PubMed  Google Scholar 

  53. Kumar D, Kumar S, (2014) Grafting of acrylic acid on to plantago psyllium mucilage. IOSR J Appl Chem 7:76–82. https://doi.org/10.9790/5736-07727682

    Article  Google Scholar 

  54. Kumar D, Chandra R, Dubey R (2016) Synthesis and characterisation of cross-linked polymers of acrylic acid and psyllium mucilage (Psy-cl-AA). J Technol Adv Sci Res 2:185–189. https://doi.org/10.14260/jtasr/2016/34

    Article  Google Scholar 

  55. Anjna K, Balbir SK, Amar SS (2010) Characterization and salt resistance swelling behavior of psy-g-poly(AA) hydrogel. Adv Mater Lett 1:123–128. https://doi.org/10.5185/amlett.2010.6129

    Article  CAS  Google Scholar 

  56. Xie W, Xu P, Wang W et al (2020) Preparation and antibacterial activity of a water-soluble chitosan derivative. Carbohyd Polym 50:35–40. https://doi.org/10.1016/S0144-8617(01)00370-8

    Article  Google Scholar 

  57. Kaneko Y, Matsuda S, Kadokawa J (2007) Chemoenzymatic syntheses of amylose-grafted chitin and chitosan. Biomacromol 8:3959–3964. https://doi.org/10.1021/bm701000t

    Article  CAS  Google Scholar 

  58. Huang M, Shen X, Sheng Y (2005) Study of graft copolymerization of N-maleamic acid-chitosan and butyl acrylate by gamma-ray irradiation. Int J Biol Macromol 36:98–102. https://doi.org/10.1016/j.ijbiomac.2005.04.002

    Article  CAS  PubMed  Google Scholar 

  59. Duan W, Chen C, Jiang L (2008) Li.Preparation and characterization of the graft copolymer of chitosan with poly[rosin-(2-acryloyloxy)ethyl ester]. Carbohyd Polym 73:582–586. https://doi.org/10.1016/j.carbpol.2007.12.025

    Article  CAS  Google Scholar 

  60. Iqbal DN, Shafiq S, Khan SM (2020) Novel chitosan/guar gum/PVA hydrogel: preparation, characterization and antimicrobial activity evaluation. Int J Biol Macromol 164:499–509. https://doi.org/10.1016/j.ijbiomac.2020.07.139

    Article  CAS  PubMed  Google Scholar 

  61. Li R, Liang W, Li M (2017) Removal of Cd(II) and Cr(VI) ions by highly cross-linked Thiocarbohydrazide-chitosan gel. Int J Biol Macromol 104:1072–1081. https://doi.org/10.1016/j.ijbiomac.2017.07.005

    Article  CAS  PubMed  Google Scholar 

  62. Masood N, Ahmed R, Tariq M (2019) Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int J Pharm 559:23–36. https://doi.org/10.1016/j.ijpharm.2019.01.019

    Article  CAS  PubMed  Google Scholar 

  63. Mikhailov SN, Zakharova AN, Drenichev MS (2016) Crosslinking of chitosan with dialdehyde derivatives of nucleosides and nucleotides. mechanism and comparison with glutaraldehyde. Nucleosides, Nucleotides Nucl Acids 35:114–129. https://doi.org/10.1080/15257770.2015.1114132

    Article  CAS  Google Scholar 

  64. Tahtat D, Mahlous M, Benamer S (2013) Oral delivery of insulin from alginate/chitosan crosslinked by glutaraldehyde. Int J Biol Macromol 58:160–168. https://doi.org/10.1016/j.ijbiomac.2013.03.064

    Article  CAS  PubMed  Google Scholar 

  65. Bangun H, Tandiono S, Arianto A (2018) Preparation and evaluation of chitosan-tripolyphosphate nanoparticles suspension as an antibacterial agent. J Appl Pharm Sci 8:147–156. https://doi.org/10.7324/JAPS.2018.81217

    Article  CAS  Google Scholar 

  66. Antoniou J, Liu F, Majeed H (2015) Physicochemical and morphological properties of size-controlled chitosan–tripolyphosphate nanoparticles. Colloids Surf, A 465:137–146. https://doi.org/10.1016/j.colsurfa.2014.10.040

    Article  CAS  Google Scholar 

  67. Ahmed ME, Mohamed HM, Mohamed MI et al (2020) Sustainable antimicrobial modified chitosan and its nanoparticles hydrogels: synthesis and characterization. Int J Biol Macromol 162:1388–1397. https://doi.org/10.1016/j.ijbiomac.2020.08.048

    Article  CAS  PubMed  Google Scholar 

  68. Li P, Feng Z, Yu Z (2019) Preparation of chitosan-Cu2+/NH3 physical hydrogel and its properties. Int J Biol Macromol 133:67–75. https://doi.org/10.1016/j.ijbiomac.2019.03.011

    Article  CAS  PubMed  Google Scholar 

  69. Muzzarelli RA, El M (2015) Genipin-crosslinked chitosan gels and scaffolds for tissue engineering and regeneration of cartilage and bone. Mar Drugs 13:7314–7338. https://doi.org/10.3390/md13127068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Touyama R, Takeda Y, Inoue K (1994) Studies on the blue pigments produced from genipin and methylamine. Structures of the brownish-red pigments, intermediates leadind to the blue pigments. Chem Pharm Bull 42:668–673.

    Article  CAS  Google Scholar 

  71. Gao L, Gan H (2014) Meng Z (2014) Effects of genipin cross-linking of chitosan hydrogels on cellular adhesion and viability. Colloids Surf B, Biointerfaces 117:398–405. https://doi.org/10.1016/j.colsurfb.2014.03.002

    Article  CAS  PubMed  Google Scholar 

  72. Gull N, Khan SM, Butt OM (2020) Jabeen, Inflammation targeted chitosan-based hydrogel for controlled release of diclofenac sodium. Int J Biol Macromol 162:175–187. https://doi.org/10.1016/j.ijbiomac.2020.06.133

    Article  CAS  PubMed  Google Scholar 

  73. Rizwan M, Yahya R, Hassan A (2017) pH Sensitive hydrogels in drug delivery: brief history, properties, swelling, and release mechanism, material selection and applications. Polymers 9:137. https://doi.org/10.3390/polym9040137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li CP, Weng MC, Huang SL (2020) Preparation and characterization of pH sensitive chitosan/3-glycidyloxypropyl trimethoxysilane (GPTMS) hydrogels by sol-gel method. Polymers 12:1326. https://doi.org/10.3390/polym12061326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ata S, Rasool A, Islam A (2020) Loading of Cefixime to pH sensitive chitosan based hydrogel and investigation of controlled release kinetics. Int J Biol Macromol 155:1236–1244. https://doi.org/10.1016/j.ijbiomac.2019.11.091

    Article  CAS  PubMed  Google Scholar 

  76. Wu X, Black L, Santacana-Laffitte G (2007) Preparation and assessment of glutaraldehyde-crosslinked collagen-chitosan hydrogels for adipose tissue engineering. J Biomed Mater Res, Part A 81:59–65. https://doi.org/10.1002/jbm.a.31003

    Article  CAS  Google Scholar 

  77. Atangana E, Oberholster PJ (2020) Mathematical modeling and stimulation of thermodynamic parameters for the removal for Cr 6+ from wastewater using chitosan cross-linked glutaraldehyde adsorbent. Alex Eng J 59:1931–1939. https://doi.org/10.1016/j.aej.2019.12.012

    Article  Google Scholar 

  78. Shu XZ, Zhu KJ (2002) Controlled drug release properties of ionically cross-linked chitosan beads: the influence of anion structure. Int J Pharm 233:217–225. https://doi.org/10.1016/s0378-5173(01)00943-7

    Article  CAS  PubMed  Google Scholar 

  79. Nasrabadi M, Morsali A, Beyramabadi SA (2020) An applied quantum-chemical model for genipin-crosslinked chitosan (GCS) nanocarrier. Int J Biol Macromol 165:1229–1240. https://doi.org/10.1016/j.ijbiomac.2020.10.013

    Article  CAS  PubMed  Google Scholar 

  80. Chiono V, Pulieri E, Vozzi G (2008) Genipin-crosslinked chitosan/gelatin blends for biomedical applications, Journal of materials science. Mater Med 19:889–898. https://doi.org/10.1007/s10856-007-3212-5

    Article  CAS  Google Scholar 

  81. Marrakchi F, Hameed BH, Hummadi EH (2020) Mesoporous biohybrid epichlorohydrin crosslinked chitosan/carbon-clay adsorbent for effective cationic and anionic dyes adsorption. Int J Biol Macromol 163:1079–1086. https://doi.org/10.1016/j.ijbiomac.2020.07.032

    Article  CAS  PubMed  Google Scholar 

  82. Ko E, Kim H (2020) Preparation of chitosan aerogel crosslinked in chemical and ionical ways by non-acid condition for wound dressing. Int J Biol Macromol 164:2177–2185. https://doi.org/10.1016/j.ijbiomac.2020.08.008

    Article  CAS  PubMed  Google Scholar 

  83. He XM, Du M, Li H et al (2016) Removal of direct dyes from aqueous solution by oxidized starch cross-linked chitosan/silica hybrid membrane. Int J Biol Macromol 82:174–181. https://doi.org/10.1016/j.ijbiomac.2015.11.005

    Article  CAS  PubMed  Google Scholar 

  84. Kogan G, Soltes L, Stern L et al (2006) Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotech Lett 29:17–25. https://doi.org/10.1007/s10529-006-9219-z

    Article  CAS  Google Scholar 

  85. Walimbe T, Panitch A, Sivasankar PM (2017) A review of hyaluronic acid and hyaluronic acid-based hydrogels for vocal fold tissue engineering. J Voice 31:416–423. https://doi.org/10.1016/j.jvoice.2016.11.014

    Article  PubMed  PubMed Central  Google Scholar 

  86. Khunmanee S, Jeong Y, Park H (2017) Crosslinking method of hyaluronic-based hydrogel for biomedical applications. J Tissue Eng. https://doi.org/10.1177/2041731417726464

    Article  PubMed  PubMed Central  Google Scholar 

  87. Yang B, Guo X, Zang H (2015) Determination of modification degree in BDDE-modified hyaluronic acid hydrogel by SEC/MS. Carbohyd Polym 131:233–239. https://doi.org/10.1016/j.carbpol.2015.05.050

    Article  CAS  Google Scholar 

  88. Shimojo AAM, Pires AMB, Lichy R et al (2015) The performance of crosslinking with divinyl sulfone as controlled by the interplay between the chemical modification and conformation of hyaluronic acid. J Braz Chem Soc 26:506–512. https://doi.org/10.5935/0103-5053.20150003

    Article  CAS  Google Scholar 

  89. Lee HY, Hwang CH, Kim HE et al (2018) Enhancement of bio-stability and mechanical properties of hyaluronic acid hydrogels by tannic acid treatment. Carbohyd Polym 186:290–298. https://doi.org/10.1016/j.carbpol.2018.01.056

    Article  CAS  Google Scholar 

  90. Kim J, Kim KS, Jiang G et al (2008) In vivo real-time bioimaging of hyaluronic acid derivatives using quantum dots. Biopolymers 89:1144–1153. https://doi.org/10.1002/bip.21066

    Article  CAS  PubMed  Google Scholar 

  91. Gřundělová L, Gregorova A, Mráček A et al (2015) Viscoelastic and mechanical properties of hyaluronan films and hydrogels modified by carbodiimide. Carbohyd Polym 119:142–148. https://doi.org/10.1016/j.carbpol.2014.11.049

    Article  CAS  Google Scholar 

  92. Pluda S, Pavan M, Galesso D et al (2016) Hyaluronic acid auto-crosslinked polymer (ACP): reaction monitoring, process investigation and hyaluronidase stability. Carbohyd Res 433:47–53. https://doi.org/10.1016/j.carres.2016.07.013

    Article  CAS  Google Scholar 

  93. Cappelli A, Grisci G, Paolino M (2014) Hyaluronan derivatives bearing variable densities of ferulic acid residues. J Mater Chem B 2:4489–4499. https://doi.org/10.1039/c3tb21824d

    Article  CAS  PubMed  Google Scholar 

  94. Lee SY, Park JH, Yang M (2020) Ferrous sulfate-directed dual-cross-linked hyaluronic acid hydrogels with long-term delivery of donepezil. Int J Pharm. https://doi.org/10.1016/j.ijpharm.2020.119309

    Article  PubMed  Google Scholar 

  95. Tao B, Yin Z (2020) Redox-responsive coordination polymers of dopamine-modified hyaluronic acid with copper and 6-mercaptopurine for targeted drug delivery and improvement of anticancer activity against cancer cells. Polymers (Basel) 12:1132. https://doi.org/10.3390/polym12051132

    Article  CAS  PubMed  Google Scholar 

  96. Shen S, Wu Y, Li K et al (2018) Versatile hyaluronic acid modified AQ4N-Cu(II)-gossypol infinite coordination polymer nanoparticles: multiple tumor targeting, highly efficient synergistic chemotherapy, and real-time self-monitoring. Biomaterials 154:197–212. https://doi.org/10.1016/j.biomaterials.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  97. Selegård R, Aronsson C, Brommesson C (2017) Folding driven self-assembly of a stimuli-responsive peptide-hyaluronan hybrid hydrogel. Sci Rep 7:7013. https://doi.org/10.1038/s41598-017-06457-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nakaji-Hirabayashi T, Kato K, Iwata H (2009) Hyaluronic acid hydrogel loaded with genetically-engineered brain-derived neurotrophic factor as a neural cell carrier. Biomaterials 30:4581–4589. https://doi.org/10.1016/j.biomaterials.2009.05.009

    Article  CAS  PubMed  Google Scholar 

  99. Choi SC, Yoo MA, Lee SY et al (2015) Modulation of biomechanical properties of hyaluronic acid hydrogels by crosslinking agents. J Biomed Mater Res Part A 103:3072–3080. https://doi.org/10.1002/jbm.a.35437

    Article  CAS  Google Scholar 

  100. Baek J, Fan Y, Jeong SH et al (2018) Facile strategy involving low-temperature chemical cross-linking to enhance the physical and biological properties of hyaluronic acid hydrogel. Carbohyd Polym 202:545–553. https://doi.org/10.1016/j.carbpol.2018.09.014

    Article  CAS  Google Scholar 

  101. Al-Sibani M, Al-Harrasi A, Neubert RH (2016) Study of the effect of mixing approach on cross-linking efficiency of hyaluronic acid-based hydrogel cross-linked with 1,4-butanediol diglycidyl ether. Eur J Pharm Sci 91:131–137. https://doi.org/10.1016/j.ejps.2016.06.010

    Article  CAS  PubMed  Google Scholar 

  102. Shimojo AA, Pires AM, Lichy R (2015) The crosslinking degree controls the mechanical, rheological, and swelling properties of hyaluronic acid microparticles. J Biomed Mater Res, Part A 103:730–737. https://doi.org/10.1002/jbm.a.35225

    Article  CAS  Google Scholar 

  103. Yeom J, Bhang SH, Kim BS et al (2010) Effect of cross-linking reagents for hyaluronic acid hydrogel dermal fillers on tissue augmentation and regeneration. Bioconjug Chem 21:240–247. https://doi.org/10.1021/bc9002647

    Article  CAS  PubMed  Google Scholar 

  104. Yan XM, Seo MS, Hwang EJ (2012) Improved synthesis of hyaluronic acid hydrogel and its effect on tissue augmentation. J Biomater Appl 27:179–186. https://doi.org/10.1177/0885328211398508

    Article  PubMed  Google Scholar 

  105. Collins MN, Birkinshaw C (2008) Physical properties of crosslinked hyaluronic acid hydrogels. J Mater Sci Mater Med 19:3335–3343. https://doi.org/10.1007/s10856-008-3476-4

    Article  CAS  PubMed  Google Scholar 

  106. Zerbinati N, Sommatis S, Maccario C (2021) Toward physicochemical and rheological characterization of different injectable hyaluronic acid dermal fillers cross-linked with polyethylene glycol diglycidyl ether. Polymers 13:948. https://doi.org/10.3390/polym13060948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Monticelli D, Martina V, Mocchi R (2019) Chemical characterization of hydrogels crosslinked with polyethylene glycol for soft tissue augmentation. Open Access Maced J Med Sci 7:1077–1081. https://doi.org/10.3889/oamjms.2019.279

    Article  PubMed  PubMed Central  Google Scholar 

  108. Jeong CH, Kim DH, Yune JH et al (2021) In vitro toxicity assessment of crosslinking agents used in hyaluronic acid dermal filler. Toxicol In Vitro. https://doi.org/10.1016/j.tiv.2020.105034

    Article  PubMed  Google Scholar 

  109. Fidalgo J, Deglesne PA, Arroyo R et al (2018) Detection of a new reaction by-product in BDDE cross-linked autoclaved hyaluronic acid hydrogels by LC-MS analysis., Med Dev (Auckland, NZ) 11:367–376. https://doi.org/10.2147/MDER.S166999

  110. Hinsenkamp A, Ézsiás B, Pál É (2021) Crosslinked hyaluronic acid gels with blood-derived protein components for soft tissue regeneration. Tissue Eng Part A 27:806–820. https://doi.org/10.1089/ten.TEA.2020.0197

    Article  CAS  PubMed  Google Scholar 

  111. Sahiner N, Suner SS, Ayyala RS (2019) Mesoporous, degradable hyaluronic acid microparticles for sustainable drug delivery application. Colloids Surf B, Biointerfaces 177:284–293. https://doi.org/10.1016/j.colsurfb.2019.02.015

    Article  CAS  PubMed  Google Scholar 

  112. Lei Y, Ning Q, Tang Y et al (2019) Exogenous hyaluronic acid and chondroitin sulfate crosslinking treatment for increasing the amount and stability of glycosaminoglycans in bioprosthetic heart valves. J Mater Sci Mater Med 30:38. https://doi.org/10.1007/s10856-019-6237-7

    Article  CAS  PubMed  Google Scholar 

  113. Calles JA, López-García A, Vallés EM (2019) Preliminary characterization of dexamethasone-loaded cross-linked hyaluronic acid films for topical ocular therapy. Int J Pharm 509:237–243. https://doi.org/10.1016/j.ijpharm.2016.05.054

    Article  CAS  Google Scholar 

  114. Mahmoudi Saber M (2019) Strategies for surface modification of gelatin-based nanoparticles. Colloids Surf, B 183:110407. https://doi.org/10.1016/j.colsurfb.2019.110407

    Article  CAS  Google Scholar 

  115. Wang X, Ao Q, Tian X (2017) Gelatin-based hydrogels for organ 3D bioprinting. Polymers 9:401. https://doi.org/10.3390/polym9090401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Foox M, Zilberman M (2015) Drug delivery from gelatin-based systems. Expert Opin Drug Deliv 12:1547–1563. https://doi.org/10.1517/17425247.2015.1037272

    Article  CAS  PubMed  Google Scholar 

  117. Gómez-Guillén MC, Giménez B, López-Caballero ME (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocolloids 25:1813–1827. https://doi.org/10.1016/j.foodhyd.2011.02.007

    Article  CAS  Google Scholar 

  118. Kang JI, Park KM (2021) Advances in gelatin-based hydrogels for wound management. J Mater Chem B 9:1503–1520. https://doi.org/10.1039/d0tb02582h

    Article  CAS  PubMed  Google Scholar 

  119. Kasai K, Kimura Y, Miyata S (2017) Improvement of adhesion and proliferation of mouse embryonic stem cells cultured on ozone/UV surface-modified substrates. Mater Sci Eng C, Mater Biol Appl 78:354–361. https://doi.org/10.1016/j.msec.2017.04.021

    Article  CAS  PubMed  Google Scholar 

  120. Ichimaru H, Taguchi T (2021) Improved tissue adhesion property of a hydrophobically modified Alaska pollock derived gelatin sheet by UV treatment. Int J Biol Macromol 172:580–588. https://doi.org/10.1016/j.ijbiomac.2021.01.085

    Article  CAS  PubMed  Google Scholar 

  121. Tsujimoto H, Tanzawa A, Matoba M et al (2013) The anti-adhesive effect of thermally cross-linked gelatin film and its influence on the intestinal anastomosis in canine models. J Biomed Mater Res Part B, Appl Biomater 101:99–109. https://doi.org/10.1002/jbm.b.32821

    Article  CAS  Google Scholar 

  122. Zhang X, Xu L, Wei S et al (2013) Stimuli responsive deswelling of radiation synthesized collagen hydrogel in simulated physiological environment. J Biomed Mater Res Part A 101:2191–2201. https://doi.org/10.1002/jbm.a.34525

    Article  CAS  Google Scholar 

  123. Bigi A, Cojazzi G, Panzavolta S et al (2001) Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials 22:763–768. https://doi.org/10.1016/s0142-9612(00)00236-2

    Article  CAS  PubMed  Google Scholar 

  124. Lu B, Wang T, Li Z (2016) Healing of skin wounds with a chitosan-gelatin sponge loaded with tannins and platelet-rich plasma. Int J Biol Macromol 82(2016):884–891. https://doi.org/10.1016/j.ijbiomac.2015.11.009

    Article  CAS  PubMed  Google Scholar 

  125. Zhang X, Do MD, Casey P et al (2010) Chemical cross-linking gelatin with natural phenolic compounds as studied by high-resolution NMR spectroscopy. Biomacromol 11(2010):1125–1132. https://doi.org/10.1021/bm1001284

    Article  CAS  Google Scholar 

  126. Kaewruang P, Benjakul S, Prodpran T et al (2014) Impact of divalent salts and bovine gelatin on gel properties of phosphorylated gelatin from the skin of unicorn leatherjacket. Lebensm-Wiss-Technol 55:477–482. https://doi.org/10.1016/j.lwt.2013.10.033

    Article  CAS  Google Scholar 

  127. Wangtueai S, Noomhorm A, Regenstein JM (2010) Effect of microbial transglutaminase on gel properties and film characteristics of gelatin from lizardfish (Saurida spp.) scales. J Food Sci 75:731–739. https://doi.org/10.1111/j.1750-3841.2010.01835.x

    Article  CAS  Google Scholar 

  128. Bigi A, Cojazzi G, Panzavolta S et al (2001) Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials 22(2001):763–768. https://doi.org/10.1016/s0142-9612(00)00236-2

    Article  CAS  PubMed  Google Scholar 

  129. Kuijpers AJ, Engbers GH, Krijgsveld J (2000) Cross-linking and characterisation of gelatin matrices for biomedical applications. J Biomater Sci Polym Ed 11:225–243. https://doi.org/10.1163/156856200743670

    Article  CAS  PubMed  Google Scholar 

  130. Lai JY (2010) Biocompatibility of chemically cross-linked gelatin hydrogels for ophthalmic use. J Mater Sci Mater Med 21:1899–1911. https://doi.org/10.1007/s10856-010-4035-3

    Article  CAS  PubMed  Google Scholar 

  131. Mi FL, Shyu SS, Peng CK (2005) Characterization of ring-opening polymerization of genipin and pH-dependent cross-linking reactions between chitosan and genipin. J Polym Sci, Part A: Polym Chem 43:1985–2000. https://doi.org/10.1002/pola.20669

    Article  CAS  Google Scholar 

  132. Ge L, Xu Y, Liang W et al (2016) Short-range and long-range cross-linking effects of polygenipin on gelatin-based composite materials. J Biomed Mater Res, Part A 104:2712–2722. https://doi.org/10.1002/jbm.a.35814

    Article  CAS  Google Scholar 

  133. Shibaguchi K, Tamura A, Terauchi M et al (2019) (2019) Mannosylated polyrotaxanes for increasing cellular uptake efficiency in macrophages through receptor-mediated endocytosis. Molecules (Basel, Switzerland) 24:439. https://doi.org/10.3390/molecules24030439

    Article  CAS  PubMed  Google Scholar 

  134. Lee DH, Tamura A, Arisaka Y et al (2019) Mechanically reinforced gelatin hydrogels by introducing slidable supramolecular cross-linkers. Polymers 11:1787. https://doi.org/10.3390/polym11111787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhang X, Do MD, Casey P et al (2010) Chemical modification of gelatin by a natural phenolic cross-linker, tannic acid. J Agric Food Chem 58:6809–6815. https://doi.org/10.1021/jf1004226

    Article  CAS  PubMed  Google Scholar 

  136. Kobayashi T, Mizuta M, Hiwatashi N et al (2017) Drug delivery system of basic fibroblast growth factor using gelatin hydrogel for restoration of acute vocal fold scar. Auris Nasus Larynx 44:86–92. https://doi.org/10.1016/j.anl.2016.04.005

    Article  PubMed  Google Scholar 

  137. Strauss G, Gibson SM (2004) Plant phenolics as cross-linkers of gelatin gels and gelatin-based coacervates for use as food ingredients. Food Hydrocolloids 18:81–89. https://doi.org/10.1016/S0268-005X(03)00045-6

    Article  CAS  Google Scholar 

  138. Erge A, Eren Ö (2021) Chicken gelatin modification by caffeic acid: a response surface methodology investigation. Food Chem 351:129269. https://doi.org/10.1016/j.foodchem.2021.129269

    Article  CAS  PubMed  Google Scholar 

  139. Rattanaruengsrikul V, Pimpha N, Supaphol P (2009) Development of gelatin hydrogel pads as antibacterial wound dressings. Macromol Biosci 9:1004–1015. https://doi.org/10.1002/mabi.200900131

    Article  CAS  PubMed  Google Scholar 

  140. Treesuppharat W, Rojanapanthu P, Siangsanoh C et al (2017) Synthesis and characterization of bacterial cellulose and gelatin-based hydrogel composites for drug-delivery systems. Biotechnol Rep (Amst) 15:84–91. https://doi.org/10.1016/j.btre.2017.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yang JJ, Lin YY, Chao KH (2021) Gelatin-poly (γ-glutamic acid) hydrogel as a potential adhesive for repair of intervertebral disc annulus fibrosus: evaluation of cytocompatibility and degradability. Spine 46:243–249. https://doi.org/10.1097/BRS.0000000000003767

    Article  Google Scholar 

  142. Erdagi SI, Ngwabebhoh FA, Yildiz U (2020) Genipin crosslinked gelatin-diosgenin-nanocellulose hydrogels for potential wound dressing and healing applications. Int J Biol Macromol 149:651–663. https://doi.org/10.1016/j.ijbiomac.2020.01.279

    Article  CAS  Google Scholar 

  143. Montemurro F, Maria CD, Orsi G (2017) Genipin diffusion and reaction into a gelatin matrix for tissue engineering applications. J Biomed Mater Res Part B, Appl Biomater 105:473–480. https://doi.org/10.1002/jbm.b.33569

    Article  CAS  Google Scholar 

  144. Hu T, Cui X, Zhu M et al (2020) 3D-printable supramolecular hydrogels with shear-thinning property: fabricating strength tunable bioink via dual crosslinking. Bioactive Mater 5:808–818. https://doi.org/10.1016/j.bioactmat.2020.06.001

    Article  Google Scholar 

  145. de Oliveira AC, Souza PR, Vilsinski BH et al (2021) Thermo- and pH-responsive gelatin/polyphenolic tannin/graphene oxide hydrogels for efficient methylene blue delivery. Molecules (Basel, Switzerland) 26:4529. https://doi.org/10.3390/molecules26154529

    Article  CAS  PubMed  Google Scholar 

  146. Ge S, Ji N, Cui S et al (2019) Coordination of covalent cross-linked gelatin hydrogels via oxidized tannic acid and ferric ions with strong mechanical properties. J Agric Food Chem 67:11489–11497. https://doi.org/10.1021/acs.jafc.9b03947

    Article  CAS  PubMed  Google Scholar 

  147. Abu-Rabeah K, Polyak B, Ionescu RE (2005) Synthesis and characterization of a pyrrole-alginate conjugate and its application in a biosensor construction. Biomacromol 6:3313–3318. https://doi.org/10.1021/bm050339j

    Article  CAS  Google Scholar 

  148. Matsumoto T, Kawai M, Masuda T (1992) Influence of concentration and mannuronate/guluronate [correction of gluronate] ratio on steady flow properties of alginate aqueous systems. Biorheology 29:411–417. https://doi.org/10.3233/bir-1992-29404

    Article  CAS  PubMed  Google Scholar 

  149. Pawar SN, Edgar KJ (2012) Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33:3279–3305. https://doi.org/10.1016/j.biomaterials.2012.01.007

    Article  CAS  PubMed  Google Scholar 

  150. Yang JS, Xie YJ, He W (2011) Research progress on chemical modification of alginate: a review. Carbohyd Polym 84:33–39. https://doi.org/10.1016/j.carbpol.2010.11.048

    Article  CAS  Google Scholar 

  151. Borgogna M, Skjåk-Bræk G, Paoletti S (2013) On the initial binding of alginate by calcium ions. The tilted egg-box hypothesis. J Phys Chem B 117:7277–7282. https://doi.org/10.1021/jp4030766

    Article  CAS  PubMed  Google Scholar 

  152. Kikuchi A, Kawabuchi M, Sugihara M (1997) Pulsed dextran release from calcium-alginate gel beads. J Control Release 47:21–29. https://doi.org/10.1016/S0168-3659(96)01612-4

    Article  CAS  Google Scholar 

  153. Orive G, Ponce S, Hernández RM (2002) Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates. Biomaterials 23:3825–3831. https://doi.org/10.1016/S0142-9612(02)00118-7

    Article  CAS  PubMed  Google Scholar 

  154. Davidovich-Pinhas M, Bianco-Peled H (2011) Alginate-PEGAc: a new mucoadhesive polymer. Acta Biomater 7:625–633. https://doi.org/10.1016/j.actbio.2010.09.021

    Article  CAS  PubMed  Google Scholar 

  155. Gong Y, Han GT, Zhang YM (2015) Research on the degradation performance of the lotus nanofibers-alginate porous materials. Polym Degrad Stab 118:104–110. https://doi.org/10.1016/j.polymdegradstab.2015.04.003

    Article  CAS  Google Scholar 

  156. Wang W, Huang XJ, Cao JD (2014) Immobilization of sodium alginate sulfates on polysulfone ultrafiltration membranes for selective adsorption of low-density lipoprotein. Acta Biomater 10:234–243. https://doi.org/10.1016/j.actbio.2013.08.032

    Article  CAS  PubMed  Google Scholar 

  157. Ma L, Cheng C, Nie C et al (2016) Anticoagulant sodium alginate sulfates and their mussel-inspired heparin-mimetic coatings. J Mater Chemi B 4:3203–3215. https://doi.org/10.1039/c6tb00636a

    Article  CAS  Google Scholar 

  158. Nilsen-Nygaard J, Hattrem MN, Draget KI (2016) Propylene glycol alginate (PGA) gelled foams: a systematic study of surface activity and gelling properties as a function of degree of esterification. Food Hydrocolloids 57:80–91. https://doi.org/10.1016/j.foodhyd.2016.01.011

    Article  CAS  Google Scholar 

  159. Pawar SN, Edgar KJ (2013) Alginate esters via chemoselective carboxyl group modification. Carbohyd Polym 98:1288–1296. https://doi.org/10.1016/j.carbpol.2013.08.014

    Article  CAS  Google Scholar 

  160. Pawar SN, Edgar KJ (2011) Chemical modification of alginates in organic solvent systems. Biomacromol 12:4095–4103. https://doi.org/10.1021/bm201152a

    Article  CAS  Google Scholar 

  161. Banks SR, Enck K, Wright M (2019) Chemical modification of alginate for controlled oral drug delivery. J Agric Food Chem 67:10481–10488. https://doi.org/10.1021/acs.jafc.9b01911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Boateng JS, Matthews KH, Stevens HNE (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892–2923. https://doi.org/10.1002/jps.21210

    Article  CAS  PubMed  Google Scholar 

  163. Rastogi P, Kandasubramanian B (2019) Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication 11:042001. https://doi.org/10.1088/1758-5090/ab331e

    Article  CAS  PubMed  Google Scholar 

  164. Sikorski P, Mo F, Skjåk-Braek G et al (2007) Evidence for egg-box-compatible interactions in calcium-alginate gels from fiber X-ray diffraction. Biomacromol 8:2098–2103. https://doi.org/10.1021/bm0701503

    Article  CAS  Google Scholar 

  165. Koehler J, Wallmeyer L, Hedtrich S et al (2017) pH-Modulating poly(ethylene glycol)/alginate hydrogel dressings for the treatment of chronic wounds. Macromol Biosci. https://doi.org/10.1002/mabi.201600369

    Article  PubMed  Google Scholar 

  166. Elsayed NH, Monier M, Alatawi RAS (2016) Synthesis and characterization of photo-crosslinkable 4-styryl-pyridine modified alginate. Carbohyd Polym 145:121–131. https://doi.org/10.1016/j.carbpol.2016.03.006

    Article  CAS  Google Scholar 

  167. Yang Y, Liu Y, Chen S (2020) Carboxymethyl β-cyclodextrin grafted carboxymethyl chitosan hydrogel-based microparticles for oral insulin delivery. Carbohyd Polym 246:116617. https://doi.org/10.1016/j.carbpol.2020.116617

    Article  CAS  Google Scholar 

  168. Du Z, Liu J, Zhang H et al (2019) N-acetyl-l-cysteine/l-cysteine-functionalized chitosan-β-lactoglobulin self-assembly nanoparticles: a promising way for oral delivery of hydrophilic and hydrophobic bioactive compounds. J Agric Food Chem 67:12511–12519. https://doi.org/10.1021/acs.jafc.9b05219

    Article  CAS  PubMed  Google Scholar 

  169. Li L, Jiang G, Yu W et al (2016) A composite hydrogel system containing glucose-responsive nanocarriers for oral delivery of insulin. Mater Sci Eng C, Mater Biol Appl 69:37–45. https://doi.org/10.1016/j.msec.2016.06.059

    Article  CAS  PubMed  Google Scholar 

  170. Xiao Y, Lu C, Liu Y et al (2020) Encapsulation of Lactobacillus rhamnosus in hyaluronic acid-based hydrogel for pathogen-targeted delivery to ameliorate enteritis. ACS Appl Mater Interfaces 12:36967–36977. https://doi.org/10.1021/acsami.0c11959

    Article  CAS  PubMed  Google Scholar 

  171. Xiao B, Xu Z, Viennois E et al (2017) Orally targeted delivery of tripeptide KPV via hyaluronic acid-functionalized nanoparticles efficiently alleviates ulcerative colitis. Mol Ther 25:1628–1640. https://doi.org/10.1016/j.ymthe.2016.11.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lin YH, Liang HF, Chung CK et al (2005) Physically crosslinked alginate/N, O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs. Biomaterials 26:2105–2113. https://doi.org/10.1016/j.biomaterials.2004.06.011

    Article  CAS  PubMed  Google Scholar 

  173. Duan B, Li M, Sun Y (2019) Orally delivered antisense oligodeoxyribonucleotides of TNF-α via polysaccharide-based nanocomposites targeting intestinal inflammation. Adv Healthc Mater. https://doi.org/10.1002/adhm.201801389

    Article  PubMed  Google Scholar 

  174. Ke X, Li M, Wang X et al (2020) (2020) An injectable chitosan/dextran/β -glycerophosphate hydrogel as cell delivery carrier for therapy of myocardial infarction. Carbohyd Polym 229:115516. https://doi.org/10.1016/j.carbpol.2019.115516

    Article  CAS  Google Scholar 

  175. Alizadeh A, Moradi L, Katebi M et al (2020) Delivery of injectable thermo-sensitive hydrogel releasing nerve growth factor for spinal cord regeneration in rat animal model. J Tissue Viab 29:359–366. https://doi.org/10.1016/j.jtv.2020.06.008

    Article  Google Scholar 

  176. Wei J, Xue W, Yu X et al (2017) pH Sensitive phosphorylated chitosan hydrogel as vaccine delivery system for intramuscular immunization. J Biomater Appl 31:1358–1369. https://doi.org/10.1177/0885328217704139

    Article  CAS  PubMed  Google Scholar 

  177. Fiorica C, Palumbo FS, Pitarresi G et al (2020) A hyaluronic acid/cyclodextrin based injectable hydrogel for local doxorubicin delivery to solid tumors. Int J Pharm 589:119879. https://doi.org/10.1016/j.ijpharm.2020.119879

    Article  CAS  PubMed  Google Scholar 

  178. Lyu Y, Xie J, Liu Y et al (2020) Injectable hyaluronic acid hydrogel loaded with functionalized human mesenchymal stem cell aggregates for repairing infarcted myocardium. ACS Biomater Sci Eng 6:6926–6937. https://doi.org/10.1021/acsbiomaterials.0c01344

    Article  CAS  PubMed  Google Scholar 

  179. Xu X, Gu Z, Chen X et al (2019) An injectable and thermosensitive hydrogel: promoting periodontal regeneration by controlled-release of aspirin and erythropoietin. Acta Biomater 86:235–246. https://doi.org/10.1016/j.actbio.2019.01.001

    Article  CAS  PubMed  Google Scholar 

  180. Han HW, Hou YT, Hsu SH (2019) Angiogenic potential of co-spheroids of neural stem cells and endothelial cells in injectable gelatin-based hydrogel. Mater Sci Eng C, Mater Biol Appl 99:140–149. https://doi.org/10.1016/j.msec.2019.01.089

    Article  CAS  PubMed  Google Scholar 

  181. Hou SJ, Lake R, Park S et al (2018) Injectable macroporous hydrogel formed by enzymatic cross-linking of gelatin microgels. ACS Appl Bio Mater 1:1430–1439. https://doi.org/10.1021/acsabm.8b00380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Bai H, Sun P, Wei S et al (2021) A novel intramural TGF β 1 hydrogel delivery method to decrease murine abdominal aortic aneurysm and rat aortic pseudoaneurysm formation and progression. Biomed Pharmacother 137:111296. https://doi.org/10.1016/j.biopha.2021.111296

    Article  CAS  PubMed  Google Scholar 

  183. Kim HS, Yang J, Kim K (2019) Biodegradable and injectable hydrogels as an immunosuppressive drug delivery system. Mater Sci Eng C, Mater Biol Appl 98:472–481. https://doi.org/10.1016/j.msec.2018.11.051

    Article  CAS  PubMed  Google Scholar 

  184. Eicher AC, Dobler D, Kiselmann C et al (2019) Dermal delivery of therapeutic DNAzymes via chitosan hydrogels. Int J Pharm 563:208–216. https://doi.org/10.1016/j.ijpharm.2019.04.005

    Article  CAS  PubMed  Google Scholar 

  185. Witting M, Boreham A, Brodwolf R et al (2015) Interactions of hyaluronic acid with the skin and implications for the dermal delivery of biomacromolecules. Mol Pharm 12:1391–1401. https://doi.org/10.1021/mp500676e

    Article  CAS  PubMed  Google Scholar 

  186. Yuan P, Qiu X, Jin R (2018) One-pot preparation of polymer microspheres with different porous structures to sequentially release bio-molecules for cutaneous regeneration. Biomater Sci 6:820–826. https://doi.org/10.1039/c7bm00993c

    Article  CAS  PubMed  Google Scholar 

  187. Sabzevari R, Roushandeh AM, Mehdipour A (2020) SA/G hydrogel containing hCAP-18/LL-37-engineered WJ-MSCs-derived conditioned medium promoted wound healing in rat model of excision injury. Life Sci 261:118381. https://doi.org/10.1016/j.lfs.2020.118381

    Article  CAS  PubMed  Google Scholar 

  188. Wang J, Li K, Xu J et al (2021) A biomimetic hierarchical small intestinal submucosa-chitosan sponge/chitosan hydrogel scaffold with a micro/nano structure for dural repair. J Mater Chem B 9:7821–7834. https://doi.org/10.1039/d1tb00948f

    Article  CAS  PubMed  Google Scholar 

  189. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737. https://doi.org/10.1038/nri3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Loi F, Cordova LA, Pajarinen J et al (2016) Inflammation, fracture and bone repair. Bone 86:119–130. https://doi.org/10.1016/j.bone.2016.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zou M, Sun J, Xiang Z et al (2021) Induction of M2-type macrophage differentiation for bone defect repair via an interpenetration network hydrogel with a GO-based controlled release system. Adv Healthc Mater. https://doi.org/10.1002/adhm.202001502

    Article  PubMed  Google Scholar 

  192. Koivusalo L, Kauppila M, Samanta S et al (2019) Tissue adhesive hyaluronic acid hydrogels for sutureless stem cell delivery and regeneration of corneal epithelium and stroma. Biomaterials 225:119516. https://doi.org/10.1016/j.biomaterials.2019.119516

    Article  CAS  PubMed  Google Scholar 

  193. Vainieri ML, Lolli A, Kops N et al (2020) Evaluation of biomimetic hyaluronic-based hydrogels with enhanced endogenous cell recruitment and cartilage matrix formation. Acta Biomater 101:293–303. https://doi.org/10.1016/j.actbio.2019.11.015

    Article  CAS  PubMed  Google Scholar 

  194. Liu G, Wu R, Yang B et al (2020) A cocktail of growth factors released from a heparin hyaluronic-acid hydrogel promotes the myogenic potential of human urine-derived stem cells in vivo. Acta Biomater 107:50–64. https://doi.org/10.1016/j.actbio.2020.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Maeda M, Kojima S, Sugiyama T et al (2017) Effects of gelatin hydrogel containing anti-transforming growth factor-β antibody in a canine filtration surgery model. Int J Mol Sci 18:985. https://doi.org/10.3390/ijms18050985

    Article  PubMed  PubMed Central  Google Scholar 

  196. Meyer-ter-Vehn T, Sieprath S, Katzenberger B (2006) Contractility as a prerequisite for TGF-beta-induced myofibroblast transdifferentiation in human tenon fibroblasts. Invest Ophthalmol Vis Sci 47:4895–4904. https://doi.org/10.1167/iovs.06-0118

    Article  PubMed  Google Scholar 

  197. Cho H, Kim J, Kim S et al (2020) Dual delivery of stem cells and insulin-like growth factor-1 in coacervate-embedded composite hydrogels for enhanced cartilage regeneration in osteochondral defects. J Control Release 327:284–295. https://doi.org/10.1016/j.jconrel.2020.08.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. Xu Tong and Dong Ping performed material preparation, data collection, and analysis. The drawing of the picture was completed by Yu Xiaojun Song Huaying and Liu Congying. The first draft of the manuscript was written by He Mengyuan. The suggestion on the structure of the article was revised by Wang Changlin. The last part of the article is revised by Gao Peng and Cong Zhufeng and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Gao Peng or Cong Zhufeng.

Ethics declarations

Conflict of interest

The authors declare there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mengyuan, H., Changlin, W., Tong, X. et al. Modification and preparation of four natural hydrogels and their application in biopharmaceutical delivery. Polym. Bull. 80, 7101–7144 (2023). https://doi.org/10.1007/s00289-022-04412-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04412-x

Keywords

Navigation