Skip to main content

Advertisement

Log in

Genotype–Phenotype Correlation in Indian Patients with MEN2-Associated Pheochromocytoma and Comparison of Clinico-Pathological Attributes with Apparently Sporadic Adrenal Pheochromocytoma

  • Original Scientific Report
  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Introduction

Pheochromocytoma (PCC) manifests in up to 50 % of MEN2 patients. We correlated the clinico-pathological features of MEN2-associated PCC (MEN-PCC) with RET mutations and compared them with non-MEN adrenal-PCCs.

Methods

In this retrospective single institution study on a large PCC database (n = 208, 1997–2014) 24 MEN-PCC patients with known RET mutations were reviewed. Excluding 7 with incomplete data, the study cohort of 17 MEN-PCC patients from 11 kindreds (M:F::7:10) was identified. Clinical, biochemical, pathological attributes, and outcomes in the MEN-PCC group were correlated with the genotype, and further compared with non-MEN, apparently sporadic adrenal-PCCs (n = 132, excluding 37 extra-adrenal and 15 VHL/NF1/SDH-associated PCC).

Results

Components of MEN2 encountered included MTC in 13(76.5 %), Marfanoid habitus in 2, and PHPT, cutaneous lichen amyloidosis and mucosal neuromas in 1 patient each. In 11(64.7 %), PCC was the first detected MEN2 component (Symptomatic:8, Incidentaloma:3). Four (23.5 %) were normotensive; 8(47.1 %) had bilateral PCC (7 synchronous, 1 metachronous). Surgery for PCC included laparoscopic adrenalectomy in 12; and cortical-sparing adrenalectomy in 2 of 8 bilateral PCC patients. Mean MEN-PCC tumor size was 6.9 ± 3.9 cm, and 6(35 %) had additional adrenal medullary hyperplasia. Four different genotypes were encountered, commonest involving codon 634, others being 804 and 918. Mean age in MEN-PCC (27.7 ± 12.2 years) was lower than non-MEN PCC (39.4 ± 15.7, p = 0.018). Proportion of pediatric patients (35.3 % in MEN-PCC vs. 12.9 % in non-MEN-PCC, p = 0.007), bilateral tumors (47.1 % in MEN-PCC, 4.5 % in non-MEN-PCC, p < 0.001), and adrenal medullary hyperplasia (35.2 % in MEN-PCC, 0.7 % in non-MEN-PCC, p < 0.001) were different. Median 24-hour urinary metanephrines was significantly higher in index MEN-PCC patients, than non-MEN-PCC (634 vs. 214 mcg/24 h, p value = 0.006), but was non-significantly higher in non-index MEN-PCC patients. Mean tumor sizes were comparable in the two groups. None of MEN-PCC patients had malignant PCC, compared to 7(5.3 %) in non-MEN-PCC.

Conclusions

In this cohort of MEN-PCC from India, the commonest causative RET mutations for MEN-PCC involved codon 634. MEN-PCC patients were younger, and more frequently had bilateral PCC than non-MEN disease. MEN-PCC patients in India are diagnosed with large tumors and extremely high catecholamine/metanephrine levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bravo EL, Tagle R (2003) Pheochromocytoma: state-of-the-art and future prospects. Endocr Rev 24(4):539–553

    Article  CAS  PubMed  Google Scholar 

  2. Agarwal G, Sadacharan D, Aggarwal V et al (2012) Surgical management of organ-contained unilateral pheochromocytoma: comparative outcomes of laparoscopic and conventional open surgical procedures in a large single-institution series. Langenbecks Arch Surg. 397(7):1109–1116

    Article  PubMed  Google Scholar 

  3. Mannelli M, Castellano M, Schiavi F et al (2009) Clinically guided genetic screening in a large cohort of Italian patients with pheochromocytomas and/or functional or nonfunctional paragangliomas. J Clin Endocrinol Metab 94:1541–1547

    Article  CAS  PubMed  Google Scholar 

  4. Fishbein L, Merrill S, Fraker DL et al (2013) Inherited mutations in pheochromocytoma and paraganglioma: why all patients should be offered genetic testing. Ann Surg Oncol 20(5):1444–1450

    Article  PubMed Central  PubMed  Google Scholar 

  5. King KS, Pacak K (2014) Familial pheochromocytomas and paragangliomas. Mol Cell Endocrinol 386(1–2):92–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Neumann HP, Bausch B, McWhinney SR (2002) Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med 346(19):1459–1466

    Article  CAS  PubMed  Google Scholar 

  7. Agarwal A, Mehrotra PK, Jain M et al (2010) Size of the tumor and pheochromocytoma of the adrenal gland scaled score (PASS): can they predict malignancy? World J Surg 34(12):3022–3028. doi:10.1007/s00268-010-0744-5

    Article  PubMed  Google Scholar 

  8. Berndt I, Reuter M, Saller B et al (1998) A new hot spot for mutations in the ret protooncogene causing familial medullary thyroid carcinoma and multiple endocrine neoplasia type 2A. J Clin Endocr Metab. 83:770–774

    CAS  PubMed  Google Scholar 

  9. Zhou Y, Zhao Y, Cui B et al (2007) RET proto-oncogene mutations are restricted to codons 634 and 918 in mainland Chinese families with MEN2A and MEN2B. Clin Endocrinol (Oxf). 67(4):570–576

    CAS  PubMed  Google Scholar 

  10. Ceccherini I, Hofstra RM, Luo Y, et al. (1994) DNA polymorphisms and conditions for SSCP analysis of the 20 exons of the ret proto-oncogene. Oncogene 9(10):3025–3029. (Erratum in: Oncogene 1995 10(6):1257)

  11. Margraf RL, Crockett DK, Krautscheid P et al (2009) The Multiple Endocrine Neoplasia type 2 RET proto-oncogene database: repository of MEN2-associated RET sequence variation and reference for genotype/phenotype correlations. Hum Mutat 30(4):548–556

    Article  CAS  PubMed  Google Scholar 

  12. Stenson PD, Mort M, Ball EV et al (2014) The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet 133:1–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Pemberton TJ, Mehta NU, Witonsky D et al (2008) Prevalence of common disease-associated variants in Asian Indians. BMC Genet 4(9):13

    Article  Google Scholar 

  14. Bayraktar S, Jackson M, Gutierrez-Barrera AM et al (2015) Genotype–phenotype correlations by ethnicity and mutation location in BRCA mutation carriers. Breast J 21(3):260–267

    Article  CAS  PubMed  Google Scholar 

  15. Sharma BP, Saranath D (2011) RET gene mutations and polymorphisms in medullary thyroid carcinomas in Indian patients. J Biosci 36(4):603–611

    Article  CAS  PubMed  Google Scholar 

  16. Alvandi E, Akrami SM, Chiani M et al (2011) Molecular analysis of the RET proto-oncogene key exons in patients with medullary thyroid carcinoma: a comprehensive study of the Iranian population. Thyroid 21(4):373–382

    Article  CAS  PubMed  Google Scholar 

  17. Qi XP, Zhao JQ, Du ZF et al (2013) Prophylactic thyroidectomy for MEN 2-related medullary thyroid carcinoma based on predictive testing for RET proto-oncogene mutation and basal serum calcitonin in China. Eur J Surg Oncol 39(9):1007–1012

    Article  CAS  PubMed  Google Scholar 

  18. Imai T, Uchino S, Okamoto T et al (2013) High penetrance of pheochromocytoma in multiple endocrine neoplasia 2 caused by germ line RET codon 634 mutation in Japanese patients. Eur J Endocrinol 168(5):683–687

    Article  CAS  PubMed  Google Scholar 

  19. Lang BH, Yu HW, Lo CY et al (2015) Bilateral pheochromocytomas in MEN2A syndrome: a two-institution experience. World J Surg 39(10):2484–2491. doi:10.1007/s00268-015-3117-2

    Article  PubMed  Google Scholar 

  20. Kim KH, Chung JS, Kim WT et al (2011) Clinical experiences of pheochromocytoma in Korea. Yonsei Med J 52(1):45–50

    Article  PubMed Central  PubMed  Google Scholar 

  21. Kim JH, Seong MW, Lee KE et al (2014) Germline mutations and genotype–phenotype correlations in patients with apparently sporadic pheochromocytoma/paraganglioma in Korea. Clin Genet 86(5):482–486

    Article  CAS  PubMed  Google Scholar 

  22. Pai R, Ebenazer A, Paul MJ et al (2015) Mutations seen among patients with pheochromocytoma and paraganglioma at a referral center from India. Horm Metab Res 47(2):133–137

    CAS  PubMed  Google Scholar 

  23. Ganesh HK, Acharya SV, Goerge J et al (2009) Pheochromocytoma in children and adolescents. Indian J Pediatr 76(11):1151–1153

    Article  CAS  PubMed  Google Scholar 

  24. Mishra A, Mehrotra PK, Agarwal G et al (2014) Pediatric and adolescent pheochromocytoma: clinical presentation and outcome of surgery. Indian Pediatr 51(4):299–302

    Article  PubMed  Google Scholar 

  25. Eisenhofer G, Lenders JW, Timmers H et al (2011) Measurements of plasma methoxytyramine, normetanephrine, and metanephrine as discriminators of different hereditary forms of pheochromocytoma. Clin Chem 57(3):411–420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. van Berkel A, Lenders JW, Timmers HJ (2014) Diagnosis of endocrine disease: biochemical diagnosis of phaeochromocytoma and paraganglioma. Eur J Endocrinol 170(3):R109–R119

    Article  PubMed  Google Scholar 

  27. Raue F, Frank-Raue K (2012) Genotype–phenotype correlation in multiple endocrine neoplasia type 2. Clinics 67(S1):69–75

    Article  PubMed Central  PubMed  Google Scholar 

  28. Korpershoek E, Petri BJ, Post E et al (2014) Adrenal medullary hyperplasia is a precursor lesion for pheochromocytoma in MEN2 syndrome. Neoplasia 16(10):868–873

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Agarwal.

Additional information

Drs. Sendhil Rajan and Ghazala Zaidi have contributed equally to this work, and should be considered joint first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajan, S., Zaidi, G., Agarwal, G. et al. Genotype–Phenotype Correlation in Indian Patients with MEN2-Associated Pheochromocytoma and Comparison of Clinico-Pathological Attributes with Apparently Sporadic Adrenal Pheochromocytoma. World J Surg 40, 690–696 (2016). https://doi.org/10.1007/s00268-015-3255-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-015-3255-6

Keywords

Navigation