Skip to main content
Log in

Cadmium Uptake From Soil by Ornamental Metallophytes: A Meta-analytical Approach

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Soil pollution by cadmium (Cd) is a serious issue worldwide affecting environmental and human health. Conventional chemical and physical methods of treating contaminated soil are costly, time-consuming, and less effective. Phytoremediation using ornamental plants is a safe and effective method for the treatment of heavy metal-polluted soil due to their rapid growth and accumulation of biomass, high heavy metal tolerance, and non-edible nature. The present study is the first attempt for the meta-analysis of existing literature on Cd accumulation and translocation by ornamental plants. The uptake and transfer capacity of ornamental plants was measured using the bio-concentration factor (BCF) and translocation factor (TF). The results indicate that ornamental plants have varying Cd-absorption capacities. Among the 49 plant species identified from 31 articles, Helianthus annuus (BCF = 5.785), Impatiens glandulifera (BCF = 4.722), and Crassocephalum crepidioides (BCF = 3.623) represented higher accumulation capacity, whereas Rorippa globosa (TF = 1.653) and Sedum spectabile Boreau (TF = 1.579) represented significantly higher translocation capacity for Cd. The contribution of various environmental factors in influencing BCF was obtained through multiple linear regression analysis. Results showed that soil pH was the major factor influencing the BCF. To further explain the influence of four main factors that are soil pH, soil organic matter (SOM), cation exchange capacity (CEC), and soil Cd concentration on the accumulation efficiency of ornamental plants, a subgroup meta-analysis was performed. Results of the subgroup meta-analysis revealed that the BCF is negatively correlated with the soil pH and SOM, while the estimated limit of soil Cd concentration for growing ornamental plants was up to 50 mg/kg. Results of this study indicate that choosing a native hyperaccumulator is not the sole key to the success of a phytoremediation design, rather the conditions of the pedosphere will determine the regulating factor for efficient removal. In order to overcome the issue of recirculation and gradual release in the rhizosphere, it is important to match the type of hyperaccumulators to the soil environment (pH, CEC, SOM, etc.) to achieve maximum translocation and desired removal. This study will help researchers to pair the right plant with environmental conditions and customize more efficient phytoremediation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Download references

Author Contributions

All authors contributed to the study conception, design, data collection, and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepika.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepika, Haritash, A.K. Cadmium Uptake From Soil by Ornamental Metallophytes: A Meta-analytical Approach. Environmental Management 71, 1087–1097 (2023). https://doi.org/10.1007/s00267-022-01776-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-022-01776-8

Keywords

Navigation