Skip to main content

Advertisement

Log in

Laboratory evolution strategies for improving lipid accumulation in Yarrowia lipolytica

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Oleaginous microorganisms are of high biotechnological interest being considered as alternative sources of oil (single cell oil—SCO). Current research for increasing productivity of oleaginous microorganisms is focused on the overexpression of genes implicated in lipid synthesis, the inactivation of genes implicated in storage lipid turnover, and on the suppression of competitive to lipid biosynthesis pathways. An alternative strategy, described here, relies on evolution of Yarrowia lipolytica under alternating environments that promote growth, encourage storage lipid synthesis, and reward high energy-containing cells. Derived populations were characterized biochemically, especially on their ability to accumulate lipids, and compared with the starting strain. Interestingly, lipid-accumulating ability early in the evolution was decreased compared with the starting strain. Subsequently, oleaginous lineages dominated, leading to populations able to accumulate lipids in high amounts. A population obtained after 77 generations was able to accumulate 44% w/w of lipid, which was 30% higher than that of the starting strain. We conclude that evolution-based strategies can be utilized as a robust tool for improving lipid accumulation capacity in oleaginous microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AFNOR (1984) Recueil des normes francaises des corps gras, grains oleagineux et produits derives. Association Francaise pour Normalisation, Paris 95

    Google Scholar 

  • Alvarez HM, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376

    Article  CAS  PubMed  Google Scholar 

  • Arous F, Mechichi T, Nasri M, Aggelis G (2016) Fatty acid biosynthesis during the life cycle of Debaryomyces etchellsii. Microbiology – SGM 162:1080–1090

    Article  CAS  PubMed  Google Scholar 

  • Arous F, Azabou S, Triantaphyllidou I-E, Aggelis G, Jaouani A, Nasri M, Mechichi T (2017) Newly isolated yeasts from Tunisian microhabitats: lipid accumulation and fatty acid composition. Eng Life Sci 17:226–236

    Article  CAS  Google Scholar 

  • Athenaki M, Gardeli C, Diamantopoulou P, Tchakouteu SS, Sarris D, Philippoussis A, Papanikolaou S (2018) Lipids from yeasts and fungi: physiology, production and analytical considerations. J Appl Microbiol 124:336–367

    Article  CAS  PubMed  Google Scholar 

  • Bellou S, Aggelis G (2012) Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. J Biotechnol 164:318–329

    Article  CAS  Google Scholar 

  • Bellou S, Baeshen MN, Elazzazy AM, Aggeli D, Sayegh F, Aggelis G (2014) Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv 32(8):1476–1493

    Article  CAS  PubMed  Google Scholar 

  • Bellou S, Triantaphyllidou IE, Aggeli D, Elazzazy AM, Baeshen MN, Aggelis G (2016a) Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr Opin Biotechnol 37:24–35

    Article  CAS  PubMed  Google Scholar 

  • Bellou S, Triantaphyllidou IE, Mizerakis P, Aggelis G (2016b) High lipid accumulation in Yarrowia lipolytica cultivated under double limitation of nitrogen and magnesium. J Biotechnol 234:116–126

    Article  CAS  PubMed  Google Scholar 

  • Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, Chardot T, Nicaud JM (2008) Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol 74:7779–7789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387

    Article  CAS  PubMed  Google Scholar 

  • Bhutada G, Kavšček M, Ledesma-Amaro R, Thomas S, Rechberger GN, Nicaud JM, Natter K (2017) Sugar versus fat: elimination of glycogen storage improves lipid accumulation in Yarrowia lipolytica. FEMS Yeast Res:1–10

  • Blazeck J, Hill A, Liu L, Knight R, Miller J, Pan A, Otoupal P, Alper HS (2014) Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun 5:1–10

    Article  CAS  Google Scholar 

  • Bommareddy RR, Sabra W, Maheshwari G, Zeng AP (2015) Metabolic network analysis and experimental study of lipid production in Rhodosporidium toruloides grown on single and mixed substrates. Microb Cell Factories 14:36

    Article  CAS  Google Scholar 

  • Čertík M, Adamechová Z, Guothová L (2013) Simultaneous enrichment of cereals with polyunsaturated fatty acids and pigments by fungal solid state fermentations. J Biotechnol 168:130–134

    Article  PubMed  CAS  Google Scholar 

  • Chatzifragkou A, Makri A, Belka A, Bellou S, Mavrou M, Mastoridou M, Mystrioti P, Onjaro G, Aggelis G, Papanikolaou S (2011) Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 36:1097–1108

    Article  CAS  Google Scholar 

  • Dobrowolski A, Drzymała K, Rzechonek DA, Mituła P, Mirończuk AM (2019) Lipid production from waste materials in seawater-based medium by the yeast Yarrowia lipolytica. Front Microbiol 10:547

    Article  PubMed  PubMed Central  Google Scholar 

  • Dourou M, Kancelista A, Juszczyk P, Sarris D, Bellou S, Triantaphyllidou I-E, Rywinska A, Papanikolaou S, Aggelis G (2016) Bioconversion of olive mill wastewater into high-added value products. J Clean Prod 139:957–969

    Article  CAS  Google Scholar 

  • Dourou M, Mizerakis P, Papanikolaou S, Aggelis G (2017) Storage lipid and polysaccharide metabolism in Yarrowia lipolytica and Umbelopsis isabellina. Appl Microbiol Biotechnol 101:7213–7226

    Article  CAS  PubMed  Google Scholar 

  • Dourou M, Aggeli D, Papanikolaou S, Aggelis G (2018) Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms. Appl Microbiol Biotechnol 102:2509–2523

    Article  CAS  PubMed  Google Scholar 

  • Dragosits M, Mattanovich D (2013) Adaptive laboratory evolution—principles and applications for biotechnology. Microb Cell Factories 12:64

    Article  Google Scholar 

  • Dulermo T, Nicaud JM (2011) Involvement of the G3P shuttle and βoxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab Eng 13:482–491

    Article  CAS  PubMed  Google Scholar 

  • Dulermo T, Tréton B, Beopoulos A, Kabran Gnankon AP, Haddouche R, Nicaud J-M (2013) Characterization of the two intracellular lipases of Y. lipolytica encoded by TGL3 and TGL4 genes: new insights into the role of intracellular lipases and lipid body organisation. Biochim Biophys Acta Mol Cell Biol Lipids 1831:1486–1495

    Article  CAS  Google Scholar 

  • Economou CN, Aggelis G, Pavlou S, Vayenas DV (2011) Single cell oil production from rice hulls hydrolysate. Bioresour Technol 102:9737–9742

    Article  CAS  PubMed  Google Scholar 

  • Fakas S, Papanikolaou S, Galiotou-Panayotou M, Komaitis M, Aggelis G (2006) Lipids of Cunninghamella echinulata with emphasis to γ-linolenic acid distribution among lipid classes. Appl Microbiol Biotechnol 73:676–683

    Article  CAS  PubMed  Google Scholar 

  • Fakas S, Galiotou-Panayotou M, Papanikolaou S, Komaitis M, Aggelis G (2007) Compositional shifts in lipid fractions during lipid turnover in Cunninghamella echinulata. Enzym Microb Technol 40:1321–1327

    Article  CAS  Google Scholar 

  • Friedlander J, Tsakraklides V, Kamineni A, Greenhagen E, Consiglio A, MacEwen K, Crabtree D, Afshar J, Nugent R, Hamilton M, Shaw A-J, South C, Stephanopoulos G, Brevnova E (2016) Engineering of a high lipid producing Yarrowia lipolytica strain. Biotechnol Biofuels 9:77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gajdoš P, Nicaud JM, Rossignol T, Čertik M (2015) Single cell oil production on molasses by Yarrowia lipolytica strains overexpressing DGA2 in multicopy. Appl Microbiol Biotechnol 99:8065–8074

    Article  PubMed  CAS  Google Scholar 

  • Halligan DL, Keightley PD (2009) Spontaneous mutation accumulation studies in evolutionary genetics. Annu Rev Ecol Evol Syst 40:151–172

    Article  Google Scholar 

  • Hardman D, McFalls D, Fakas S (2017) Characterization of phosphatidic acid phosphatase activity in the oleaginous yeast Yarrowia lipolytica and its role in lipid biosynthesis. Yeast 34:83–91

    Article  CAS  PubMed  Google Scholar 

  • Karamerou EE, Theodoropoulos C, Webb C (2017) Evaluating feeding strategies for microbial oil production from glycerol by Rhodotorula glutinis. Eng Life Sci 17:314–324

    Article  CAS  Google Scholar 

  • Koutinas AA, Chatzifragkou A, Kopsahelis N, Papanikolaou S, Kookos IK (2014) Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production. Fuel 116:566–577

    Article  CAS  Google Scholar 

  • Lazar Z, Liu N, Stephanopoulos G (2018) Holistic approaches in lipid production by Yarrowia lipolytica. Trends Biotechnol 36:1157–1170

    Article  CAS  PubMed  Google Scholar 

  • Ledesma-Amaro R, Dulermo R, Niehus X, Nicaud JM (2016) Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metab Eng 38:38–46

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80:749–756

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S, Hu Q (2010) Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab Eng 12:387–391

    Article  PubMed  CAS  Google Scholar 

  • Liang YN, Cui Y, Trushenski J, Blackburn JW (2010) Converting crude glycerol derived from yellow grease to lipids through yeast fermentation. Bioresour Technol 101:7581–7586

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Pan A, Spofford C, Zhou N, Alper HS (2015) An evolutionary metabolic engineering approach for enhancing lipogenesis in Yarrowia lipolytica. Metab Eng 29:36–45

    Article  PubMed  CAS  Google Scholar 

  • Makri A, Fakas S, Aggelis G (2010) Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresour Technol 101:2351–2358

    Article  CAS  PubMed  Google Scholar 

  • Matsakas L, Sterioti A, Rova U, Christakopoulos P (2014) Use of dried sweet sorghum for the efficient production of lipids by the yeast Lipomyces starkeyi CBS 1807. Ind Crop Prod 62:367–372

    Article  CAS  Google Scholar 

  • Miller L (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Mlíčková K, Luo Y, D’Andrea S, Peč P, Chardot T, Nicaud JM (2004) Acyl-CoA oxidase, a key step for lipid accumulation in the yeast Yarrowia lipolytica. J Mol Catal B Enzym 28:81–85

  • Papanikolaou S, Aggelis G (2011a) Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur J Lipid Sci Technol 113:1031–1051

    Article  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2011b) Lipids of oleaginous yeasts. Part II: technology and potential applications. Eur J Lipid Sci Technol 113:1052–1073

    Article  CAS  Google Scholar 

  • Papanikolaou S, Sarantou S, Komaitis M, Aggelis G (2004) Repression of reserve lipid turnover in Cunninghamella echinulata and Mortierella isabellina cultivated in multiple-limited media. J Appl Microbiol 97:867–875

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Liu L, Zeng AP, Wei D (2017) From low-cost substrates to single cell oils synthesized by oleaginous yeasts. Bioresour Technol 245:1507–1519

    Article  CAS  PubMed  Google Scholar 

  • Rakicka M, Lazar Z, Dulermo T, Fickers P, Nicaud JM (2015) Lipid production by the oleaginous yeast Yarrowia lipolytica using industrial by-products under different culture conditions. Biotechnol Biofuels 8:104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ratledge C (2013) Microbial oils: an introductory overview of current status and future prospects. OCL 20:602

    Article  Google Scholar 

  • Rose F (1833) Über die Verbindungen des Eiweiss mit Metalloxyden. Ann Phys Chem 104:132–142

    Article  Google Scholar 

  • Rywińska A, Rymowicz W, Żarowska B, Skrzypiński A (2010) Comparison of citric acid production from glycerol and glucose by different strains of Yarrowia lipolytica. World J Microbiol Biotechnol 26:1217–1224

    Article  PubMed  CAS  Google Scholar 

  • Rywińska A, Juszczyk P, Wojtatowicz M, Rymowicz W (2011) Chemostat study of citric acid production from glycerol by Yarrowia lipolytica. J Biotechnol 152:54–57

    Article  PubMed  CAS  Google Scholar 

  • Sagnak R, Cochot S, Molina-Jouve C, Nicaud JM, Guillouet SE (2018) Modulation of the glycerol phosphate availability led to concomitant reduction in the citric acid excretion and increase in lipid content and yield in Yarrowia lipolytica. J Biotechnol 265:40–45

    Article  CAS  PubMed  Google Scholar 

  • Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15:1–9

    Article  CAS  PubMed  Google Scholar 

  • Tchakouteu SS, Chatzifragkou A, Kalantzi O, Koutinas AA, Aggelis G, Papanikolaou S (2015) Oleaginous yeast Cryptococcus curvatus exhibits interplay between biosynthesis of intracellular sugars and lipids. Eur J Lipid Sci Technol 117:657–672

    Article  CAS  Google Scholar 

  • Van den Bergh B, Swings T, Fauvart M, Michiels J (2018) Experimental design, population dynamics, and diversity in microbial experimental evolution. Microbiol Mol Biol Rev 82(3)

  • Vasiliadou IA, Bellou S, Daskalaki A, Tomaszewska-Hetman L, Chatzikotoula C, Kompoti B, Papanikolaou S, Vayenas D, Pavlou S, Aggelis G (2018) Biomodification of fats and oils and scenarios of adding value on renewable fatty materials through microbial fermentations: modelling and trials with Yarrowia lipolytica. J Clean Prod 200:1111–1129

    Article  CAS  Google Scholar 

  • Wang Z, Xu H, Wang G, Chi Z, Chi Z (2013) Disruption of the MIG1 gene enhances lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. Biochim Biophys Acta Mol Cell Biol Lipids 1831:675–682

    Article  CAS  Google Scholar 

  • Winkler JD, Kao KC (2014) Recent advances in the evolutionary engineering of industrial biocatalysts. Genomics 104:406–411

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Alper HS (2019) Strategies for directed and adapted evolution as part of microbial strain engineering. J Chem Technol Biotechnol 94:366–376

    Article  CAS  Google Scholar 

Download references

Funding

The project was financially supported by the University of Patras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Aggelis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1298 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daskalaki, A., Perdikouli, N., Aggeli, D. et al. Laboratory evolution strategies for improving lipid accumulation in Yarrowia lipolytica. Appl Microbiol Biotechnol 103, 8585–8596 (2019). https://doi.org/10.1007/s00253-019-10088-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10088-7

Keywords

Navigation