Skip to main content
Log in

Protein expression analysis revealed a fine-tuned mechanism of in situ detoxification pathway for the tolerant industrial yeast Saccharomyces cerevisiae

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Inhibitory compounds liberated from lignocellulose pretreatment are representative toxic chemicals that repress microbial growth and metabolism. A tolerant strain of the industrial yeast Saccharomyces cerevisiae is able to detoxify a major class of toxic compounds while producing ethanol. Knowledge on the yeast tolerance was mostly obtained by gene expression analysis and limited protein expression evidence is yet available underlying the yeast adaptation. Here we report a comparative protein expression profiling study on Y-50049, a tolerant strain compared with its parental industrial type strain Y-12632. We found a distinctive protein expression of glucose-6-phosphate dehydrogenase (Zwf1) in Y-50049 but not in Y-12632, in the relatively conserved glycolysis and pentose phosphate pathway (PPP) in response to a combinational challenge of 2-furaldehyde (furfural) and 5-hydroxymethyl-2-furaldehyde (HMF). A group of proteins with aldehyde reduction activity was uniquely induced expressed in Y-50049 but not in Y-12632. Such evidence allowed fine-tuning a mechanism of the renovated in situ detoxification by Y-50049. As the key protein, Zwf1 drove the glucose metabolism in favor of the oxidative branch of the PPP facilitating in situ detoxification of the toxic chemicals by Y-50049. The activated expression of Zwf1 generated the essential cofactor nicotinamide adenine dinucleotide phosphate (NADPH) enabling reduction of furfural and HMF through a group of aldehyde reduction enzymes. In return, the activate aldehyde reductions released desirable feedbacks of NADP+ stimulating continued oxidative activity of Zwf1. Thus, a well-maintained cofactor regeneration cycle was established to restore the cofactor imbalance caused by furfural-HMF. Challenges and perspectives on adaptation of significantly differential expressions of ribosomal proteins and other unique proteins are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen SA, Clark W, McCAffery JM, Cai Z, Lanctot A, Slininger PJ, Liu ZL, Gorsich SW (2010) Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels 3:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avery AM, Willetts SA, Avery SV (2004) Genetic dissection of the phospholipid hydroperoxidase activity of yeast gpx3 reveals its functional importance. J Bio Chem 279:46652–46658

    Article  CAS  Google Scholar 

  • Ban N, Beckmann R, Cate JHD, Dinman JD, Dragon F, Ellis SR, Lafontaine DLJ, Lindahl L, Liljas A, Lipton JM, McAlear MA, Moore PB, Noller HF, Ortega J, Panse VG, Ramakrishnan V, Spahn CMT, Steitz TA, Tchorzewski M, Tollervey D, Warren AJ, Williamson JR, Wilson D, Yonath A, Yusupov M (2014) A new system for naming ribosomal proteins. Curr Opin Struct Biol 24:165–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batth TS, Keasling JD, Petzold CJ (2012) Targeted proteomics for metabolic pathway optimization In: Keller N, Turner G, editors. Fungal secondary metabolism, methods in molecular biology (methods and protocols), Vol. 944, Humana Press Totowa. NJ 2012:237–249

  • Berger S, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Deve 23:781–783

    Article  CAS  Google Scholar 

  • Bowman MJ, Jordan DB, Vermillion KE, Braker JD, Moon J, Liu ZL (2010) Stereochemistry of furfural reduction by an aldehyde reductase from Saccharomyces cerevisiae that contributes to in situ furfural detoxification. Appl Environ Microbiol 76:4926–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradbury JE, Richards KD, Niederer HA, Lee SA, Dunbar PR, Gardner RC (2006) A homozygous diploid subset of commercial wine yeast strains. Antonie van Leeuwenhoek 89:27–37

    Article  CAS  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brooks AN, Turkarslan S, Beer KD, Lo FY, Baliga NS (2011) Adaptation of cells to new environments. Wiley Interdiscip Rev Syst Biol Med 3:544–561

    Article  CAS  PubMed  Google Scholar 

  • Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12:323–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De la Cruz J, Karbstein K, Woodford JL Jr (2015) Functions of ribosomal proteins in assembly of eukaryotic ribosome in vivo. Annu Rev Biochem 84:93–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delaunay A, Pflieger D, Barrault MB, Vinh J, Toledano MB (2002) A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111:471–481

    Article  CAS  PubMed  Google Scholar 

  • Fedoroff NV (2012) Transposable elements, epigenetics, and genome evolution. Sci 338:758–767

    Article  CAS  Google Scholar 

  • Fleischer TC, Weaver CM, McAfee KJ, Jennings JL, Link AJ (2006) Systematic identification and functional screens of uncharacterized proteins associated with eukaryotic ribosomal complexes. Genes Dev 20:1294–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford G, Ellis EM (2002) Characterization of Ypr1p from Saccharomyces cerevisiae as a 2-methylbutyraldehyde reductase. Yeast 19:1087–1096

    Article  CAS  PubMed  Google Scholar 

  • Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD (2006) Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 71:339–349

    Article  CAS  PubMed  Google Scholar 

  • Grunstein M, Gasser S (2013) Epigenetics in Saccharomyces cerevisiae. Cold Spring Harb Perspect Biol 5:a017491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hector RE, Bowman MJ, Skory CD, Cotta MA (2009) The Saccharomyces cerevisiae YMR315W gene encodes an NADP(H)-specific oxidoreductase regulated by the transcription factor Stb5p in response to NADPH limitation. New Biotechnol 26:171–180

    Article  CAS  Google Scholar 

  • Heer D, Heine D, Sauer U (2009) Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases. Appl Environ Microbiol 75:7631–7638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X (2017) Data, sequence analysis, and evolution. In: Keith JM (ed) Bioinformatics, vol 1. Humana Press, Totowa, pp 35–45

    Chapter  Google Scholar 

  • Huang X, Adams MD, Zhou H, Kerlavage AR (1997) A tool for analyzing and annotating genomic sequences. Genomics 46:37–45

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Ye L, Chou HH, Yang IH, Chao KM (2004) Efficient combination of multiple word models for improved sequence comparison. Bioinformatics 20:2529–2533

    Article  CAS  PubMed  Google Scholar 

  • Jordan D, Braker JD, Bowman MJ, Vermillion KE, Moon J, Liu ZL (2011) Kinetic mechanism of an aldehyde reductase of Saccharomyces cerevisiae that relieves toxicity of furfural and 5-hydroxymethylfurfural. Bioch Biophysica Acta 1814:1686–1694

    Article  CAS  Google Scholar 

  • Jung YH, Kim S, Yang J, Seo JH, Kim KH (2017) Intracellular metabolite profiling of Saccharomyces cerevisiae evolved under furfural. Microb Biotechnol 10:395–404

    Article  CAS  PubMed  Google Scholar 

  • Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg S (2012) Fast gapped-read alignment with Bowtie 2. Nature Met 9:357–359

    Article  CAS  Google Scholar 

  • Lecompte O, Ripp R, Thierry JC, Moras D, Poch O (2002) Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale. Nucleic Acids Res 30:24

    Article  Google Scholar 

  • Lin FM, Qiao B, Yuan YJ (2009a) Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound. Appl Environ Microbiol 75:3765–3776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin FM, Tan Y, Yuan YJ (2009b) Temporal quantitative proteomics of Saccharomyces cerevisiae in response to a nonlethal concentration of furfural. Proteomics 9:5471–5483

    Article  CAS  PubMed  Google Scholar 

  • Liu ZL (2006) Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors. Appl Microbiol Biotechnol 73:27–36

    Article  CAS  PubMed  Google Scholar 

  • Liu ZL (2011) Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl Microbiol Biotechnol 90:809–825

    Article  CAS  PubMed  Google Scholar 

  • Liu ZL (2018) Understanding the tolerance of the industrial yeast Saccharomyces cerevisiae against a major class of toxic aldehyde compounds. Appl Microbiol Biotechnol 102:5369–5390

    Article  CAS  PubMed  Google Scholar 

  • Liu ZL, Blaschek HP (2010) Biomass conversion inhibitors and in situ detoxification. In: Vertes A, Qureshi N, Yukawa H, Blaschek H (eds) Biomass to biofuels: strategies for global industries. Wiley, Chichester, pp 233–259

    Chapter  Google Scholar 

  • Liu ZL, Ma M, Song M (2009) Evolutionary engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways. Mol Genet Genomics 282:233–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu ZL, Moon J (2009) A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Gene 446:1–10

    Article  CAS  PubMed  Google Scholar 

  • Liu ZL, Moon J, Andersh BJ, Slininger PJ, Weber SA (2008) Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfurl by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81:743–753

    Article  CAS  PubMed  Google Scholar 

  • Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW (2004) Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol 31:345–352

    Article  CAS  PubMed  Google Scholar 

  • Liu ZL, Slininger PJ, Gorsich SW (2005) Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol 121-124:451–460

    Article  CAS  PubMed  Google Scholar 

  • Liu ZL, Wang X, Webr SA (2018) Tolerant industrial yeast Saccharomyces cerevisiae possess a more robust cell wall integrity signaling pathway against 2-furaldehyde and 5-(hydroxymethyl)-2-furaldehyde. J Biotechnol 276-277:15–24

    Article  CAS  PubMed  Google Scholar 

  • Llobell A, Lopez-Ruiz A, Peinado J, Lopez-Barea J (1988) Glutathione reductase directly mediates the stimulation of yeast glucose-6-phosphate dehydrogenase by GSSG. Biochem 249:293–296

    Article  CAS  Google Scholar 

  • Lu H, Zhu Y, Xiong J, Wang R, Jia Z (2015) Potential extra-ribosomal functions of ribosomal proteins in Saccharomyces cerevisiae. Microbiol Res 177:28–33

    Article  CAS  PubMed  Google Scholar 

  • Luo C, Brink D, Blanch H (2002) Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass Bioenergy 22:125–138

    Article  CAS  Google Scholar 

  • Ma LH, Takanishi CL, Wood MJ (2007) Molecular mechanism of oxidative stress perception by the Orp1 protein. J Biol Chem 282:1429–1436

    Google Scholar 

  • Ma M, Liu ZL (2010) Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4 and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae. BMC Genomics 11:660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon J, Liu ZL (2015) Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae. Yeast 32:399–407

    Article  CAS  PubMed  Google Scholar 

  • Moon J, Liu ZL (2012) Engineered NADH-dependent GRE2 from Saccharomyces cerevisiae by direct enzyme evolution enhances HMF reduction using additional cofactor NADPH. Enzyme Microb Technol 50:115–120

    Article  CAS  PubMed  Google Scholar 

  • Nikolay R, van den Bruck D, Achenbach J, Nierhaus KH (2015) Ribosomal proteins: role in ribosomal functions. In: eLS. John Wiley & Sons Chichester http://www.els.net 2015.

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    Article  CAS  Google Scholar 

  • Reinders J, Zahedi RP, Pfanner N, Meisinger C, Sickmann A (2006) Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J Proteome Res 5:1543–1554

    Article  CAS  PubMed  Google Scholar 

  • Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nature Biotechnol 29:24–26

    Article  CAS  Google Scholar 

  • Sehnem NT, Machado AS, FCB L, WdeB P, Morais MAM Jr, MAZ A (2013) 5-Hydoxymethylfurfural induced ADH7 and ARI1 expression in tolerant industrial Saccharomyces cerevisiae strain P6H9 during bioethanol production. Bioresour Technol 133:190–196

    Article  CAS  PubMed  Google Scholar 

  • Steffen KK, McCormick MA, Pham KM, MacKay VL, Delaney JR, Murakami CJ, Kaeberlein M, Kennedy BK (2012) Ribosome deficiency protects against ER stress in Saccharomyces cerevisiae. Genetics 191:107–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warner JR, Mclntosh KB (2009) How common are extraribosomal functions of ribosomal proteins? Mol Cell 34:3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodford JL Jr, Baserga SJ (2013) Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 195:643–681

    Article  CAS  Google Scholar 

  • Wool IG (1966) Extraribosomal functions of ribosomal proteins. Trends Biochem Sci 21:164–165

    Article  Google Scholar 

  • Yang J, Ding MZ, Li BZ, Liu ZL, Wang X, Yuan YJ (2012) Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural and phenol. OMICS J Integ Biol 16:374–386

    Article  CAS  Google Scholar 

  • Zhang Y, Liu ZL, Song M (2015) ChiNet uncovers rewired transcription subnetworks in tolerant yeast for advanced biofuels conversion. Nucleic Acids Res 43:4393–4407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Liu ZL, Ning K, Wang A, Zeng X, Xu J (2014) Genomic and transcriptome analysis reveal that MAPK- and phosphatidylinositol-signaling pathways mediate tolerance to 5-hydroxymehyl-2-furaldehyde for industrial yeast Saccharomyces cerevisiae. Sci. Reports 4:6556

    Article  CAS  Google Scholar 

  • Zhou X, Liao WJ, Lia JM, Liao P, Lu H (2015) Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol 7:92–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are extremely grateful to the kind gift from Christopher Petzold at Joint BioEnergy Institute, US Department of Energy, for the protein detection applying their in-house developed LC-MS/MS technology. Without their generous support and the reproducible data obtained, this study would be impossible. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Lewis Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 752 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z.L., Huang, X., Zhou, Q. et al. Protein expression analysis revealed a fine-tuned mechanism of in situ detoxification pathway for the tolerant industrial yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 103, 5781–5796 (2019). https://doi.org/10.1007/s00253-019-09906-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09906-9

Keywords

Navigation