Skip to main content
Log in

Enhanced mannitol biosynthesis by the fruit origin strain Fructobacillus tropaeoli CRL 2034

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Mannitol is a natural low-calorie sugar alcohol produced by certain (micro)organisms applicable in foods for diabetics due to its zero glycemic index. In this work, we evaluated mannitol production and yield by the fruit origin strain Fructobacillus tropaeoli CRL 2034 using response surface methodology with central composite design (CCD) as optimization strategy. The effect of the total saccharide (glucose + fructose, 1:2) content (TSC) in the medium (75, 100, 150, 200, and 225 g/l) and stirring (S; 50, 100, 200, 300 and 350 rpm) on mannitol production and yield by this strain was evaluated by using a 22 full-factorial CCD with 4 axial points (α = 1.5) and four replications of the center point, leading to 12 random experimental runs. Fermentations were carried out at 30 °C and pH 5.0 for 24 h. Minitab-15 software was used for experimental design and data analyses. The multiple response prediction analysis established 165 g/l of TSC and 200 rpm of S as optimal culture conditions to reach 85.03 g/l [95% CI (78.68, 91.39)] of mannitol and a yield of 82.02% [95% CI (71.98, 92.06)]. Finally, a validation experiment was conducted at the predicted optimum levels. The results obtained were 81.91 g/l of mannitol with a yield of 77.47% in outstanding agreement with the expected values. The mannitol 2-dehydrogenase enzyme activity was determined with 4.6–4.9 U/mg as the highest value found. To conclude, F. tropaeoli CRL 2034 produced high amounts of high-quality mannitol from fructose, being an excellent candidate for this polyol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antunes A, Rainey FA, Nobre MF, Schumann P, Ferreira AM, Ramos A, Santos H (2002) Leuconostoc ficulneum sp. nov., a novel lactic acid bacterium isolated from a ripe fig, and reclassification of Lactobacillus fructosus as Leuconostoc fructosum comb. nov. Int J Syst Evol Microbiol 52(2):647–655

    Article  CAS  PubMed  Google Scholar 

  • Betiku E, Emeko HA, Solomon BO (2016) Fermentation parameter optimization of microbial oxalic acid production from cashew apple juice. Heliyon 2(2):e00082

    Article  PubMed  PubMed Central  Google Scholar 

  • Brzozowski B, Lewandowska M (2014) Prolyl endopeptidase-optimization of medium and culture conditions for enhanced production by Lactobacillus acidophilus. Electron J Biotechnol 17(5):204–210

    Article  CAS  Google Scholar 

  • Camu N, De Winter T, Verbrugghe K, Cleenwerck I, Vandamme P, Takrama JS, Vancanneyt M, De Vuyst L (2007) Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Appl Environ Microbiol 73(6):1809–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalheiro F, Moniz P, Duarte LC, Esteves MP, Gírio FM (2011) Mannitol production by lactic acid bacteria grown in supplemented carob syrup. J Ind Microbiol Biotechnol 38(1):221–227

    Article  CAS  PubMed  Google Scholar 

  • Chambel L, Chelo IM, Zé-Zé L, Pedro LG, Santos MA, Tenreiro R (2006) Leuconostoc pseudoficulneum sp. nov., isolated from a ripe fig. Int J Syst Evol Micrbiol 56(6):1375–1381

    Article  CAS  Google Scholar 

  • Chaturvedi V, Bartiss A, Wong B (1997) Expression of bacterial mtlD in Saccharomyces cerevisiae results in mannitol synthesis and protects a glycerol-defective mutant from high-salt and oxidative stress. J Bacteriol 179(1):157–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Company TCR (1967) 1968 Handbook of chemistry and physics, 48th edition edn. The Chemical Rubber Company, Cleveland, Ohio

  • De Man J, Rogosa D, Sharpe ME (1960) A medium for the cultivation of lactobacilli. J Appl Bacteriol 23(1):130–135

    Article  Google Scholar 

  • de Olmos AR, Bru E, Garro M (2015) Optimization of fermentation parameters to study the behavior of selected lactic cultures on soy solid state fermentation. Int J Food Microbiol 196:16–23

    Article  Google Scholar 

  • Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17(19):7843–7853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo A (2012) Fructophilic lactic acid bacteria inhabit fructose-rich niches in nature. Microb Ecol Health Dis 23:10.3402

    Google Scholar 

  • Endo A, Okada S (2008) Reclassification of the genus Leuconostoc and proposals of Fructobacillus fructosus gen. nov., comb. nov., Fructobacillus durionis comb. nov., Fructobacillus ficulneus comb. nov. and Fructobacillus pseudoficulneus comb. nov. Int J Syst Evol Microbiol 58(9):2195–2205

    Article  CAS  PubMed  Google Scholar 

  • Endo A, Salminen S (2013) Honeybees and beehives are rich sources for fructophilic lactic acid bacteria. Syst Appl Microbiol 36(6):444–448

    Article  PubMed  Google Scholar 

  • Endo A, Futagawa-Endo Y, Dicks LM (2009) Isolation and characterization of fructophilic lactic acid bacteria from fructose-rich niches. Syst Appl Microbiol 32(8):593–600. doi:10.1016/j.syapm.2009.08.002

    Article  CAS  PubMed  Google Scholar 

  • Endo A, Irisawa T, Futagawa-Endo Y, Sonomoto K, Itoh K, Takano K, Okada S, Dicks LM (2011) Fructobacillus tropaeoli sp. nov., a fructophilic lactic acid bacterium isolated from a flower. Int J Syst Evol Micrbiol 61(4):898–902

    Article  CAS  Google Scholar 

  • Endo A, Tanaka N, Oikawa Y, Okada S, Dicks L (2014) Fructophilic characteristics of Fructobacillus spp. may be due to the absence of an alcohol/acetaldehyde dehydrogenase gene (adhE). Curr Microbiol 68(4):531–535

  • Felis GE, Salvetti S, Torriani S (2015) Systematics of lactic acid bacteria: current status, 2nd edn. Wiley Blackwell, Oxford

  • Fontes CP, Honorato TL, Rabelo MC, Rodrigues S (2009) Kinetic study of mannitol production using cashew apple juice as substrate. Bioprocess Biosyst Eng 32(4):493–499

    Article  CAS  PubMed  Google Scholar 

  • Gaspar P, Carvalho AL, Vinga S, Santos H, Neves AR (2013) From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnol Adv 31(6):764–788

    Article  CAS  PubMed  Google Scholar 

  • Hassaïne O, Zadi-Karam H, Karam N-E (2014) Statistical optimization of lactic acid production by Lactococcus lactis strain, using the central composite experimental design. Afr J Biotechnol 13(45)

  • He H, Chen Y, Zhang Y, Wei C (2011) Bacteria associated with gut lumen of Camponotus japonicus Mayr. Environ Entomol 40(6):1405–1409

    Article  CAS  PubMed  Google Scholar 

  • Kets EP, Galinski EA, De Wit M, De Bont JA, Heipieper HJ (1996) Mannitol, a novel bacterial compatible solute in Pseudomonas putida S12. J Bacteriol 178(23):6665–6670

  • Koch H, Schmid-Hempel P (2011) Bacterial communities in central European bumblebees: low diversity and high specificity. Microb Ecol 62(1):121–133

    Article  PubMed  Google Scholar 

  • Kodama R (1956) Studies on the nutrition of lactic acid bacteria. Part IV. Lactobacillus fructosus nov. sp., a new species of lactic acid bacteria. J Agric Chem Soc Jpn 30:705–708

    CAS  Google Scholar 

  • LeBlanc JG, Laino JE, del Valle MJ, Vannini V, Van Sinderen D, Taranto MP, de Valdez G, de Giori GS, Sesma F (2011) B-group vitamin production by lactic acid bacteria–current knowledge and potential applications. J Appl Microbiol 111(6):1297–1309

    Article  CAS  PubMed  Google Scholar 

  • Leisner JJ, Vancanneyt M, Van der Meulen R, Lefebvre K, Engelbeen K, Hoste B, Laursen B, Bay L, Rusul G, De Vuyst L (2005) Leuconostoc durionis sp. nov., a heterofermenter with no detectable gas production from glucose. Int J Syst Evol Microbiol 55(3):1267–1270

    Article  CAS  PubMed  Google Scholar 

  • Li H, Cao Y (2010) Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 39(5):1107–1116

    Article  CAS  PubMed  Google Scholar 

  • Lim C, Rahim R, Ho Y, Arbakariya B (2007) Optimization of growth medium for efficient cultivation of Lactobacillus salivarius i 24 using response surface method. Malays J Microbiol 3(2):41–47

    Google Scholar 

  • Makhija LK, Jha MK, Bhattacharya S, Rai A, Dey AB, Saha A (2011) Transverse facial cleft: a series of 17 cases. Indian J Plast Surg 44(3):439–443. doi:10.4103/0970-0358.90815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manochai P, Phimolsiripol Y, Seesuriyachan P (2014) Response surface optimization of exopolysaccharide production from sugarcane juice by Lactobacillus confusus TISTR 1498. CMU J Nat Sci 13(1):425–438. doi:10.12982/CMUJNS.2014.0046

    Google Scholar 

  • Ortiz ME, Fornaguera MJ, Raya RR, Mozzi F (2012) Lactobacillus reuteri CRL 1101 highly produces mannitol from sugarcane molasses as carbon source. Appl Microbiol Biotechnol 95(4):991–999

    Article  CAS  PubMed  Google Scholar 

  • Ortiz ME, Bleckwedel J, Raya RR, Mozzi F (2013) Biotechnological and in situ food production of polyols by lactic acid bacteria. Appl Microbiol Biotechnol 97(11):4713–4726

    Article  CAS  PubMed  Google Scholar 

  • Ortiz ME, Raya RR, Mozzi F (2015) Efficient mannitol production by wild-type Lactobacillus reuteri CRL 1101 is attained at constant pH using a simplified culture medium. Appl Microbiol Biotechnol 99(20):8717–8729

    Article  CAS  PubMed  Google Scholar 

  • Ortiz ME, Bleckwedel J, Fadda S, Picariello G, Hebert EM, Raya RR, Mozzi F (2017) Global analysis of mannitol 2-dehydrogenase in Lactobacillus reuteri CRL 1101 during mannitol production through enzymatic, genetic and proteomic approaches. PLoS One 12(1):e0169441

    Article  PubMed  PubMed Central  Google Scholar 

  • Price CE, Zeyniyev A, Kuipers OP, Kok J (2012) From meadows to milk to mucosa–adaptation of Streptococcus and Lactococcus species to their nutritional environments. FEMS Microbiol Rev 36(5):949–971

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez C, Rimaux T, Fornaguera MJ, Vrancken G, de Valdez GF, De Vuyst L, Mozzi F (2012) Mannitol production by heterofermentative Lactobacillus reuteri CRL 1101 and Lactobacillus fermentum CRL 573 in free and controlled pH batch fermentations. Appl Microbiol Biotechnol 93(6):2519–2527

    Article  PubMed  Google Scholar 

  • Rokop Z, Horton M, Newton I (2015) Interactions between cooccurring lactic acid bacteria in honey bee hives. Appl Environ Microbiol 81(20):7261–7270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha BC (2006) Effect of salt nutrients on mannitol production by Lactobacillus intermedius NRRL B-3693. J Ind Microbiol Biotechnol 33(10):887–890

    Article  CAS  PubMed  Google Scholar 

  • Saha BC, Nakamura LK (2003) Production of mannitol and lactic acid by fermentation with Lactobacillus intermedius NRRL B-3693. Biotechnol Bioeng 82(7):864–871

    Article  CAS  PubMed  Google Scholar 

  • Sand M, Rodrigues M, González JM, Crécy-Lagard V, Santos H, Müller V, Averhoff B (2015) Mannitol-1-phosphate dehydrogenases/phosphatases: a family of novel bifunctional enzymes for bacterial adaptation to osmotic stress. Environ Microbiol 17(3):711–719

    Article  CAS  PubMed  Google Scholar 

  • Snauwaert I, Papalexandratou Z, De Vuyst L, Vandamme P (2013) Characterization of strains of Weissella fabalis sp. nov. and Fructobacillus tropaeoli from spontaneous cocoa bean fermentations. Int J Syst Evol Microbiol 63(5):1709–1716

    Article  CAS  PubMed  Google Scholar 

  • Thaochan N, Drew RAI, Hughes J, Vijaysegaran S, Chinajariyawong A (2010) Alimentary tract bacteria isolated and identified with API-20E and molecular cloning techniques from Australian tropical fruit flies, Bactrocera cacuminata and B. tryoni. Int J Insect Sci 10(1):131

    CAS  Google Scholar 

  • Versalovic J, Schneider M, De Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5(1):25–40

    CAS  Google Scholar 

  • von Weymarn N, Hujanen M, Leisola M (2002a) Production of D-mannitol by heterofermentative lactic acid bacteria. Process Biochem 37(11):1207–1213

    Article  Google Scholar 

  • von Weymarn N, Kiviharju K, Leisola M (2002b) High-level production of D-mannitol with membrane cell-recycle bioreactor. J Ind Microbiol Biotechnol 29(1):44–49

    Article  Google Scholar 

  • Wisselink H, Weusthuis R, Eggink G, Hugenholtz J, Grobben G (2002) Mannitol production by lactic acid bacteria: a review. Int Dairy J 12(2):151–161

    Article  CAS  Google Scholar 

  • Yun JW, Kim DH (1998) A comparative study of mannitol production by two lactic acid bacteria. J Biosci Bioeng 85(2):203–208

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Dr. César Catalán from the Universidad Nacional de Tucumán for equipment supply and assistance during the melting temperature determination of mannitol crystals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Mozzi.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Funding

The study received support from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 003) and Fondo para la Investigación Científica y Tecnológica (FONCyT, Préstamo BID PICT 2014-312) from Argentina; the Tallin University of Technology, Estonia, for awarding KA the internship scholarship to work in CERELA; and the Belgian Argentinean Fermented Foods (BAFF) project from the Vrije Universiteit Brussel, Belgium. LRR is recipient of a doctoral fellowship from CONICET.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz Rodríguez, L.G., Aller, K., Bru, E. et al. Enhanced mannitol biosynthesis by the fruit origin strain Fructobacillus tropaeoli CRL 2034. Appl Microbiol Biotechnol 101, 6165–6177 (2017). https://doi.org/10.1007/s00253-017-8395-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8395-1

Keywords

Navigation