Skip to main content
Log in

Bacterial Communities in Central European Bumblebees: Low Diversity and High Specificity

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Recent studies on the microbial flora of the honeybee gut have revealed an apparently highly specific community of resident bacteria that might play a role in immune defence and food preservation for their hosts. However, at present, very little is known about the diversity and ecology of bacteria occurring in non-domesticated bees like bumblebees, which are of similar importance as honeybees for the pollination of agricultural and wild flowers. To fill this gap in knowledge, we examined six of the most common bumblebee species in Central Europe from three locations in Germany and Switzerland for their bacterial communities. We used a culture-independent molecular approach based on sequencing the 16S rRNA gene from a selection of individuals and examining a larger number of samples by terminal restriction fragment length polymorphism profiles. The gut flora was dominated by very few and mostly undescribed groups of bacteria belonging to the Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria. This core set of bacteria was present in all of the examined bumblebee species. These bacteria are similar to, but distinct from, bacteria previously described from the honeybee gut. Significant differences were observed between the communities of bacteria in the different bumblebee species; the effect of sampling location was less strong. A novel group of Betaproteobacteria additionally shows evidence for host species-specific genotypes. The gut flora of bumblebees therefore is apparently composed of relatively few highly specialized bacteria, indicating a strong interaction and possibly important functions with their hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Abdo Z, Schüette UME, Bent SJ, Williams CJ, Forney LJ, Joyce P (2006) Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environ Microbiol 8(5):929–938

    Article  PubMed  Google Scholar 

  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  3. Azambuja P, Garcia ES, Ratcliffe NA (2005) Gut microbiota and parasite transmission by insect vectors. Trends Parasitol 21(12):568–572

    Article  PubMed  Google Scholar 

  4. Babendreier D, Joller D, Romeis J, Bigler F, Widmer F (2007) Bacterial community structures in honeybee intestines and their responses to two insecticidal proteins. FEMS Microbiol Ecol 59:600–610

    Article  PubMed  CAS  Google Scholar 

  5. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2010) GenBank. Nucleic Acids Res 38(suppl 1):D46–D51

    Article  PubMed  CAS  Google Scholar 

  6. Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  7. Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487

    Article  CAS  Google Scholar 

  8. Brysch-Herzberg M (2004) Ecology of yeasts in plant–bumblebee mutualism in Central Europe. FEMS Microbiol Ecol 50:87–100

    Article  PubMed  CAS  Google Scholar 

  9. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18(1):117–143

    Article  Google Scholar 

  10. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  PubMed  CAS  Google Scholar 

  11. Colla SR, Otterstatter MC, Gegear RJ, Thomson JD (2006) Plight of the bumble bee: pathogen spillover from commercial to wild populations. Biol Conserv 129(4):461–467

    Article  Google Scholar 

  12. Cox-Foster D, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan P, Briese T, Hornig M, Geiser DM, Martinson V, vanEngelsdorp D, Kalkstein AL, Drysdale A, Hui J, Zhai J, Cui L, Hutchinson SK, Simons JF, Egholm M, Pettis JS, Lipkin WI (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318(5848):283–287

    Article  PubMed  CAS  Google Scholar 

  13. Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92

    Article  PubMed  CAS  Google Scholar 

  14. Dillon RJ, Vennard CT, Buckling A, Charnley AK (2005) Diversity of locust gut bacteria protects against pathogen invasion. Ecol Lett 8(12):1291–1298

    Article  Google Scholar 

  15. Durrer S, Schmid-Hempel P (1994) Shared use of flowers leads to horizontal pathogen transmission. Proc R Soc Lond B Bio 258(1353):299–302

    Article  Google Scholar 

  16. Durrer S, Schmid-Hempel P (1995) Parasites and the regional distribution of bumblebee species. Ecography 18:114–122

    Article  Google Scholar 

  17. Endo A, Okada S (2008) Reclassification of the genus Leuconostoc and proposals of Fructobacillus fructosus gen. nov., comb. nov., Fructobacillus durionis comb. nov., Fructobacillus ficulneus comb. nov. and Fructobacillus pseudoficulneus comb. nov. Int J Syst Evol Microbiol 58:2195–2205

    Article  PubMed  CAS  Google Scholar 

  18. Field JG, Clarke KR, Warwick RM (1982) A practical strategy for analysing multispecies distribution patterns. Mar Ecol Prog Ser 8:37–52

    Article  Google Scholar 

  19. Forsgren E, Olofsson TC, Vásquez A, Fries I (2010) Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie 41:99–108

    Article  Google Scholar 

  20. Fraune S, Bosch TCG (2010) Why bacteria matter in animal development and evolution. BioEssays 32:571–580

    Article  PubMed  CAS  Google Scholar 

  21. Gilliam M, Moffett JO, Kauffeld NM (1983) Examination of floral nectar of citrus, cotton, and Arizona desert plants for microbes. Apidologie 14(4):299–302

    Article  Google Scholar 

  22. Gilliam M (1997) Identification and roles of non-pathogenic microflora associated with honey bees. FEMS Microbiol Lett 155:1–10

    Article  CAS  Google Scholar 

  23. Goulson D (2003) Bumblebees: their behaviour and ecology. Oxford University Press, Oxford

    Google Scholar 

  24. Goulson D, Lye GC, Darvill B (2008) Decline and conservation of bumble bees. Annu Rev Entomol 53:191–208

    Article  PubMed  CAS  Google Scholar 

  25. Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, New York

    Google Scholar 

  26. Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361(9356):512–519

    Article  PubMed  Google Scholar 

  27. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704

    Article  PubMed  Google Scholar 

  28. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electronica 4(1):9

    Google Scholar 

  29. Hedlund BP, Kuhn DA (2006) The genera Simonsiella and Alysiella. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K, Stackebrandt E (eds) The Prokaryotes: a handbook on the biology of bacteria, vol 5. Springer, New York, pp 828–839

    Google Scholar 

  30. Herrera CM, Vega C, Canto A, Pozo M (2009) Yeasts in floral nectar: a quantitative survey. Ann Bot-London 103:1415–1423

    Article  Google Scholar 

  31. Hines H (2008) Historical biogeography, divergence times, and diversification patterns of bumble bees (Hymenoptera: Apidae: Bombus). Syst Biol 57(1):58–75

    Article  PubMed  Google Scholar 

  32. Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N, Kudo T (2005) Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71(11):6590–6599

    Article  PubMed  CAS  Google Scholar 

  33. Hooper LV, Midtvedt T, Gordon JI (2002) How host–microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 22:283–307

    Article  PubMed  CAS  Google Scholar 

  34. Hosokawa T, Kikuchi Y, Nikoh N, Shimada M, Fukatsu T (2006) Strict host–symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLoS Biol 4(10):1841–1851

    Article  CAS  Google Scholar 

  35. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20(14):2317–2319

    Article  PubMed  CAS  Google Scholar 

  36. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180(18):4765–4774

    PubMed  CAS  Google Scholar 

  37. Hutchison DW, Strasburg JL, Shaffer C (2005) Cleaning microsatellite PCR products with Sephadex in 96-well filtration plates enhances genotyping quality. Biotechniques 38(1):56–58

    Article  PubMed  CAS  Google Scholar 

  38. Janson EM, Stiremann JO, Singer MS, Abbot P (2008) Phytophagous insect–microbe mutualisms and adaptive evolutionary diversification. Evolution 62(5):997–1012

    Article  PubMed  Google Scholar 

  39. Jeyaprakash A, Hoy MA, Allsopp MH (2003) Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using 16S rRNA sequences. J Invertebr Pathol 84:96–103

    Article  PubMed  CAS  Google Scholar 

  40. Kikuchi Y, Hosokawa T, Fukatsu T (2007) Insect–microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol 73(13):4308–4316

    Article  PubMed  CAS  Google Scholar 

  41. Kikuchi Y, Hosokawa T, Nikoh N, Meng X, Kamagata Y, Fukatsu T (2009) Host–symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs. BMC Biol 7:2

    Article  PubMed  Google Scholar 

  42. Killer J, Kopečný J, Mrázek J, Rada V, Benada O, Koppová I, Havlík J, Straka J (2009) Bifidobacterium bombi sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol 59:2020–2024

    Article  PubMed  CAS  Google Scholar 

  43. Killer J, Kopečný J, Mrázek J, Rada V, Dubná S, Marounek M (2010) Bifidobacteria in the digestive tract of bumblebees. Anaerobe 16(2):165–170

    Article  PubMed  CAS  Google Scholar 

  44. Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S, Moran N (2011) A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol 20(3):619–628

    Article  PubMed  CAS  Google Scholar 

  45. Laursen BG, Lene B, Cleenwerck U, Vancanneyt M, Swings J, Dalgaard P, Leisner JJ (2005) Carnobacterium divergens and Carnobacterium maltaromaticum as spoilers or protective cultures in meat and seafood: phenotypic and genotypic characterization. Syst Appl Microbiol 28(2):151–164

    Article  PubMed  CAS  Google Scholar 

  46. Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI (2008) Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6:776–788

    Article  PubMed  CAS  Google Scholar 

  47. Li F, Hullar MAJ, Lampe JW (2007) Optimization of terminal restriction fragment polymorphism (TRFLP) analysis of human gut microbiota. J Microbiol Meth 68(2):303–311

    Article  CAS  Google Scholar 

  48. Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63(11):4516–4522

    PubMed  CAS  Google Scholar 

  49. Lombardo MP (2008) Access to mutualistic endosymbiotic microbes: an underappreciated benefit of group living. Behav Ecol Sociobiol 62(4):479–497

    Article  Google Scholar 

  50. Moeseneder MM, Arrieta JM, Muyzer G, Winter C, Herndl GJ (1999) Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis. Appl Environ Microbiol 65(8):3518–3525

    PubMed  CAS  Google Scholar 

  51. Mohr KI, Tebbe CC (2006) Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ Microbiol 8(2):258–272

    Article  PubMed  CAS  Google Scholar 

  52. Ochman H, Elwyn S, Moran NA (1999) Calibrating bacterial evolution. Proc Natl Acad Sci 96(22):12638–12643

    Article  PubMed  CAS  Google Scholar 

  53. Olofsson TC, Vásquez A (2008) Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Curr Microbiol 57(4):356–363

    Article  PubMed  CAS  Google Scholar 

  54. Olofsson TC, Vásquez A (2009) Phylogenetic comparison of bacteria isolated from the honey stomach of honey bees Apis mellifera and bumble bees Bombus spp. J Apic Res 48(4):233–237

    Article  Google Scholar 

  55. Otti O, Schmid-Hempel P (2007) Nosema bombi: a pollinator parasite with detrimental fitness effects. J Invertebr Pathol 96:118–124

    Article  PubMed  Google Scholar 

  56. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  PubMed  CAS  Google Scholar 

  57. Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142–160

    Article  PubMed  CAS  Google Scholar 

  58. Rees GN, Baldwin DS, Watson GO, Perryman S, Nielsen DL (2004) Ordination and significance testing of microbial community composition derived from terminal restriction fragment length polymorphisms: application of multivariate statistics. A van Leeuw J Microb 86:339–347

    Article  Google Scholar 

  59. Roulston TH, Cane JH (2000) Pollen nutritional content and digestibility for animals. Plant Syst Evol 222:187–209

    Article  CAS  Google Scholar 

  60. Schmid-Hempel P, Reber Funk C (2004) The distribution of genotypes of the trypanosome parasite, Crithidia bombi, in populations of its host, Bombus terrestris. Parasitology 129(2):147–158

    Article  PubMed  CAS  Google Scholar 

  61. Singh R, Levitt AL, Rajotte EG, Holmes EC, Ostiguy N, vanEngelsdorp D, Lipkin WI, de Pamphilis CW, Toth AL, Cox-Foster DL (2010) RNA viruses in hymenopteran pollinators: evidence of inter-taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species. PLoS ONE 5(12):e14357

    Article  PubMed  CAS  Google Scholar 

  62. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  63. Tringe SG, Hugenholtz P (2008) A renaissance for the pioneering 16S rRNA gene. Curr Opin Microbiol 11(5):442–446

    Article  PubMed  CAS  Google Scholar 

  64. Vallet-Gely I, Lemaitre B, Boccard F (2008) Bacterial strategies to overcome insect defences. Nat Rev Microbiol 6:302–313

    Article  PubMed  CAS  Google Scholar 

  65. Vásquez A, Olofsson TC (2009) The lactic acid bacteria involved in the production of bee pollen and bee bread. J Apic Res 48(3):189–195

    Article  Google Scholar 

  66. Velthuis HHW, van Doorn A (2006) A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37:421–451

    Article  Google Scholar 

  67. Vorburger C, Gehrer L, Rodriguez P (2010) A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biol Lett 6(1):109–111

    Article  PubMed  Google Scholar 

  68. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703

    PubMed  CAS  Google Scholar 

  69. Williams PH (1998) An annotated checklist of bumble bees with an analysis of patterns of description (Hymenoptera: Apidae, Bombini). Bull Nat Hist Mus Lond Entomol 67:79–152

    Google Scholar 

  70. Williams PH, Osborne JL (2009) Bumblebee vulnerability and conservation world-wide. Apidologie 40:367–387

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to Roland Bürki for assistance in the lab during his undergraduate project. Regula Schmid-Hempel, Anna Lazzaro and Nikki E. Freed gave helpful advice on the lab work and data analysis. Martina Tognazzo collected and dissected the bumblebees from Switzerland. Parts of the data analysed in this paper were generated in the Genetic Diversity Centre of ETH Zurich. Bumblebee samples from Germany were collected with permission from the Untere Naturschutzbehörde Landkreis Celle (Lothar Sander); bumblebee samples from the Swiss National Park were collected with permission of the Forschungskommission des Schweizerischen Nationalparks (Dr. Thomas Scheurer). Financial supported by the Swiss National Science Foundation (grant no. 31003A-116057 to PSH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hauke Koch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, H., Schmid-Hempel, P. Bacterial Communities in Central European Bumblebees: Low Diversity and High Specificity. Microb Ecol 62, 121–133 (2011). https://doi.org/10.1007/s00248-011-9854-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9854-3

Keywords

Navigation